Minimum Cost Data Aggregation with Localized Processing for Statistical Inference

Anima Anandkumar, L. Tong, A. Swami, A. Ephremides
{"title":"Minimum Cost Data Aggregation with Localized Processing for Statistical Inference","authors":"Anima Anandkumar, L. Tong, A. Swami, A. Ephremides","doi":"10.1109/INFOCOM.2008.129","DOIUrl":null,"url":null,"abstract":"The problem of minimum cost in-network fusion of measurements, collected from distributed sensors via multihop routing is considered. A designated fusion center performs an optimal statistical-inference test on the correlated measurements, drawn from a Markov random field. Conditioned on the delivery of a sufficient statistic for inference to the fusion center, the structure of optimal routing and fusion is shown to be a Steiner tree on a transformed graph. This Steiner-tree reduction preserves the approximation ratio, which implies that any Sterner- tree approximation can be employed for minimum cost fusion with the same approximation ratio. The proposed fusion scheme involves routing packets of two types viz., raw measurements sent for local processing, and aggregates obtained on combining these processed values. The performance of heuristics for minimum cost fusion are evaluated through theory and simulations, showing a significant saving in routing costs, when compared to routing all the raw measurements to the fusion center.","PeriodicalId":447520,"journal":{"name":"IEEE INFOCOM 2008 - The 27th Conference on Computer Communications","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2008 - The 27th Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM.2008.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

The problem of minimum cost in-network fusion of measurements, collected from distributed sensors via multihop routing is considered. A designated fusion center performs an optimal statistical-inference test on the correlated measurements, drawn from a Markov random field. Conditioned on the delivery of a sufficient statistic for inference to the fusion center, the structure of optimal routing and fusion is shown to be a Steiner tree on a transformed graph. This Steiner-tree reduction preserves the approximation ratio, which implies that any Sterner- tree approximation can be employed for minimum cost fusion with the same approximation ratio. The proposed fusion scheme involves routing packets of two types viz., raw measurements sent for local processing, and aggregates obtained on combining these processed values. The performance of heuristics for minimum cost fusion are evaluated through theory and simulations, showing a significant saving in routing costs, when compared to routing all the raw measurements to the fusion center.
基于本地化处理的最小代价数据聚合统计推断
考虑了通过多跳路由对分布式传感器采集的测量值进行最小代价的网络融合问题。指定的融合中心对相关测量值执行最佳统计推理测试,从马尔可夫随机场绘制。在向融合中心提供足够的推理统计量的条件下,最优路由和融合的结构被表示为变换图上的一棵斯坦纳树。这种施泰纳树约简保留了近似比,这意味着任何施泰纳树近似都可以用于具有相同近似比的最小代价融合。所提出的融合方案包括两种类型的路由数据包,即发送给本地处理的原始测量值和组合这些处理值获得的聚合。通过理论和仿真对最小成本融合的启发式算法的性能进行了评估,结果表明,与将所有原始测量数据路由到融合中心相比,启发式算法显著节省了路由成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信