Out-of-Sample Equity Premium Predictability and Sample Split Invariant Inference

Gueorgui I. Kolev, R. Karapandža
{"title":"Out-of-Sample Equity Premium Predictability and Sample Split Invariant Inference","authors":"Gueorgui I. Kolev, R. Karapandža","doi":"10.2139/ssrn.2024573","DOIUrl":null,"url":null,"abstract":"For a comprehensive set of 21 equity premium predictors we find extreme variation in out-of-sample predictability results depending on the choice of the sample split date. To resolve this issue we propose reporting in graphical form the out-of-sample predictability criteria for every possible sample split, and two out-of-sample tests that are invariant to the sample split choice. We provide Monte Carlo evidence that our bootstrap-based inference is valid. The in-sample, and the sample split invariant out-of-sample mean and maximum tests that we propose, are in broad agreement. Finally we demonstrate how one can construct sample split invariant out-of-sample predictability tests that simultaneously control for data mining across many variables.","PeriodicalId":369344,"journal":{"name":"American Finance Association Meetings (AFA)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Finance Association Meetings (AFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2024573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

For a comprehensive set of 21 equity premium predictors we find extreme variation in out-of-sample predictability results depending on the choice of the sample split date. To resolve this issue we propose reporting in graphical form the out-of-sample predictability criteria for every possible sample split, and two out-of-sample tests that are invariant to the sample split choice. We provide Monte Carlo evidence that our bootstrap-based inference is valid. The in-sample, and the sample split invariant out-of-sample mean and maximum tests that we propose, are in broad agreement. Finally we demonstrate how one can construct sample split invariant out-of-sample predictability tests that simultaneously control for data mining across many variables.
样本外股票溢价的可预测性和样本分裂不变推断
对于21个股票溢价预测指标的综合集,我们发现样本外可预测性结果的极端变化取决于样本分割日期的选择。为了解决这个问题,我们建议以图形形式报告每个可能的样本分裂的样本外可预测性标准,以及两个对样本分裂选择不变的样本外测试。我们提供了蒙特卡洛证据,证明我们基于自举的推理是有效的。我们提出的样本内、样本分裂不变样本外均值和最大值检验是广泛一致的。最后,我们演示了如何构建样本分割不变样本外可预测性测试,同时控制跨多个变量的数据挖掘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信