A new concept of porous thermoelectric module using a reciprocating flow for cooling/heating system

S. Tada, Ryozo Echigo, H. Yoshida
{"title":"A new concept of porous thermoelectric module using a reciprocating flow for cooling/heating system","authors":"S. Tada, Ryozo Echigo, H. Yoshida","doi":"10.1109/ICT.1996.553315","DOIUrl":null,"url":null,"abstract":"This paper presents the conceptual design of a novel thermoelectric cooler and/or heater utilizing the heat transfer effect due to forced convection. A porous thermoelectric converter combined with a reciprocating flow system in which the flow direction of air passing through the element is reversed after regular intervals is proposed. This flow system in effect makes the thermal conductivity insignificant and contributes toward the achievement of a high efficient cooler and/or heater. For the first phase, a one-dimensional numerical analysis is performed to examine the detailed characteristics of the device by systematically varying the relevant thermo-fluid parameters. In particular, the flow velocity and the porosity of the thermoelectric elements are the most important parameters which directly affect the system performance. For example in a porous thermoelectric cooler, the lowest temperature of air is approximately -20/spl deg/C for an ambient temperature of 27/spl deg/C, which is attained with a flow velocity u=0.35 m/s, a material porosity /spl epsiv/=0.5, and 2.5 cm thick thermoelectric elements. As a notable feature, the temperature of the cooling section of the system varies considerably with the velocity, and it attains a minimum at u=0.35 m/s. Subsequently, on the basis of the proposed cooling system, an extended concept aimed to realize commercial coolers and/or heaters is briefly discussed.","PeriodicalId":447328,"journal":{"name":"Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1996-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.1996.553315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents the conceptual design of a novel thermoelectric cooler and/or heater utilizing the heat transfer effect due to forced convection. A porous thermoelectric converter combined with a reciprocating flow system in which the flow direction of air passing through the element is reversed after regular intervals is proposed. This flow system in effect makes the thermal conductivity insignificant and contributes toward the achievement of a high efficient cooler and/or heater. For the first phase, a one-dimensional numerical analysis is performed to examine the detailed characteristics of the device by systematically varying the relevant thermo-fluid parameters. In particular, the flow velocity and the porosity of the thermoelectric elements are the most important parameters which directly affect the system performance. For example in a porous thermoelectric cooler, the lowest temperature of air is approximately -20/spl deg/C for an ambient temperature of 27/spl deg/C, which is attained with a flow velocity u=0.35 m/s, a material porosity /spl epsiv/=0.5, and 2.5 cm thick thermoelectric elements. As a notable feature, the temperature of the cooling section of the system varies considerably with the velocity, and it attains a minimum at u=0.35 m/s. Subsequently, on the basis of the proposed cooling system, an extended concept aimed to realize commercial coolers and/or heaters is briefly discussed.
采用往复流的多孔热电模块的新概念,用于冷却/加热系统
本文介绍了一种利用强制对流传热效应的新型热电冷却器和/或加热器的概念设计。提出了一种多孔热电变换器与往复流动系统相结合,其中空气通过元件的流动方向在一定间隔后反转。这种流动系统实际上使导热系数不显著,并有助于实现高效冷却器和/或加热器。在第一阶段,进行一维数值分析,通过系统地改变相关的热流体参数来检查装置的详细特性。其中,热电元件的流动速度和孔隙率是直接影响系统性能的最重要参数。例如,在多孔热电冷却器中,当环境温度为27/spl℃时,空气的最低温度约为-20/spl℃,流速u=0.35 m/s,材料孔隙率/spl epsiv =0.5,热电元件厚度为2.5 cm。作为一个显著的特征,系统冷却段的温度随速度变化很大,在u=0.35 m/s时达到最低。随后,在提出的冷却系统的基础上,简要讨论了旨在实现商用冷却器和/或加热器的扩展概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信