Implementation of Green Coffee Bean Quality Classification Using Slim-CNN in Edge Computing

Yan-Feng Wang, Chuan-Chung Cheng, J. Tsai
{"title":"Implementation of Green Coffee Bean Quality Classification Using Slim-CNN in Edge Computing","authors":"Yan-Feng Wang, Chuan-Chung Cheng, J. Tsai","doi":"10.1109/ICKII55100.2022.9983596","DOIUrl":null,"url":null,"abstract":"As one of the most important economic industries, how to improve the quality and output of the coffee industry is important. Defective coffee beans affect the flavor of coffee after roasting and grinding. In order to reduce the cost of labor and time, it is effective to use a convolutional neural network (CNN) model to identify defective green coffee beans. However, the complexity and huge parameters of the CNN model make the edge computing devices spend too much time on identification. Therefore, we introduced a lightweight deep learning network Slim-CNN to classify green coffee beans. Experiment results show that Slim-CNN achieves 92% accuracy with 6 times fewer parameters than MobileNet and 270 times fewer parameters than VGG16. The Slim-CNN model can be used on different edge computing devices to reduce labor costs in the coffee industry and improve the quality of coffee.","PeriodicalId":352222,"journal":{"name":"2022 IEEE 5th International Conference on Knowledge Innovation and Invention (ICKII )","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 5th International Conference on Knowledge Innovation and Invention (ICKII )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICKII55100.2022.9983596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

As one of the most important economic industries, how to improve the quality and output of the coffee industry is important. Defective coffee beans affect the flavor of coffee after roasting and grinding. In order to reduce the cost of labor and time, it is effective to use a convolutional neural network (CNN) model to identify defective green coffee beans. However, the complexity and huge parameters of the CNN model make the edge computing devices spend too much time on identification. Therefore, we introduced a lightweight deep learning network Slim-CNN to classify green coffee beans. Experiment results show that Slim-CNN achieves 92% accuracy with 6 times fewer parameters than MobileNet and 270 times fewer parameters than VGG16. The Slim-CNN model can be used on different edge computing devices to reduce labor costs in the coffee industry and improve the quality of coffee.
边缘计算中利用Slim-CNN实现绿咖啡豆品质分类
咖啡产业作为我国最重要的经济产业之一,如何提高咖啡产业的质量和产量显得尤为重要。有缺陷的咖啡豆在烘焙和研磨后会影响咖啡的风味。为了降低人工成本和时间成本,采用卷积神经网络(CNN)模型对缺陷生咖啡豆进行识别是有效的。然而,CNN模型的复杂性和庞大的参数使得边缘计算设备在识别上花费了太多的时间。因此,我们引入了一个轻量级的深度学习网络Slim-CNN对生咖啡豆进行分类。实验结果表明,Slim-CNN在参数比MobileNet少6倍、比VGG16少270倍的情况下,准确率达到92%。Slim-CNN模型可以在不同的边缘计算设备上使用,以降低咖啡行业的劳动力成本,提高咖啡的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信