Parameter Estimation of Particle Flow Model for Soils Using Neural Networks

Shouju Li, Li Wu, Fuzheng Qu, Wei Sun
{"title":"Parameter Estimation of Particle Flow Model for Soils Using Neural Networks","authors":"Shouju Li, Li Wu, Fuzheng Qu, Wei Sun","doi":"10.4156/JCIT.VOL5.ISSUE8.3","DOIUrl":null,"url":null,"abstract":"A calibration process is developed to determine the parameter values. Three-axial compressions tests in laboratory and neural network are used to determine the material internal friction angle and stiffness, respectively. These tests are repeated numerically using PFC models with different sets of particle friction coefficients and particle stiffness values. Three-axial compressions tests are found to be dependent on both the particle friction coefficient and the particle stiffness. The compression test results can be used to determine a unique set of particle friction and particle stiffness values. The calibration process is validated by modelling filling process of head chamber of shield machine. It is shown that the parameter estimation procedure proposed in the paper can accurately predict the deformation characteristics and flow patterns of conditioned soils.","PeriodicalId":360193,"journal":{"name":"J. Convergence Inf. Technol.","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Convergence Inf. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4156/JCIT.VOL5.ISSUE8.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A calibration process is developed to determine the parameter values. Three-axial compressions tests in laboratory and neural network are used to determine the material internal friction angle and stiffness, respectively. These tests are repeated numerically using PFC models with different sets of particle friction coefficients and particle stiffness values. Three-axial compressions tests are found to be dependent on both the particle friction coefficient and the particle stiffness. The compression test results can be used to determine a unique set of particle friction and particle stiffness values. The calibration process is validated by modelling filling process of head chamber of shield machine. It is shown that the parameter estimation procedure proposed in the paper can accurately predict the deformation characteristics and flow patterns of conditioned soils.
基于神经网络的土壤颗粒流模型参数估计
开发了一种校准过程来确定参数值。采用室内三轴压缩试验和神经网络分别确定了材料内摩擦角和刚度。采用不同颗粒摩擦系数和颗粒刚度值的PFC模型对这些试验进行了数值重复。发现三轴压缩试验同时依赖于颗粒摩擦系数和颗粒刚度。压缩试验结果可用于确定一套独特的颗粒摩擦和颗粒刚度值。通过对盾构机头腔充填过程的建模,验证了标定过程。结果表明,本文提出的参数估计方法能较准确地预测条件土的变形特征和流态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信