{"title":"An mean shift algorithm with adaptive bandwidth and weight selection for high spatial remotely sensed imagery segmentation","authors":"Qinling Dai, Leiguang Wang, Qizhi Xu, Yun Zhang","doi":"10.1109/IGARSS.2014.6945950","DOIUrl":null,"url":null,"abstract":"An improved mean shift segmentation method featuring adaptive parameter selection is presented in this paper. We associate the bandwidths and weight for each point in a spatial-range feature space with boundary information in an image plane. Varying weight and bandwidth for each pixel are assigned according to a boundary map, which is obtained by learning multiple edge cues. We consider two groups of edge cues and two regressing modules, approach the cue combination as a supervised learning problem from the ground truth data (manually sketched boundary maps). From our preliminary results, the provided method can combine the top-down information got from regression models with the mean shift process and constrain over-clustering of pixels belonging different land objects.","PeriodicalId":385645,"journal":{"name":"2014 IEEE Geoscience and Remote Sensing Symposium","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2014.6945950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An improved mean shift segmentation method featuring adaptive parameter selection is presented in this paper. We associate the bandwidths and weight for each point in a spatial-range feature space with boundary information in an image plane. Varying weight and bandwidth for each pixel are assigned according to a boundary map, which is obtained by learning multiple edge cues. We consider two groups of edge cues and two regressing modules, approach the cue combination as a supervised learning problem from the ground truth data (manually sketched boundary maps). From our preliminary results, the provided method can combine the top-down information got from regression models with the mean shift process and constrain over-clustering of pixels belonging different land objects.