Machine Learning Toolkit for System Log File Reduction and Detection of Malicious Behavior

Ralph P. Ritchey, R. Perry
{"title":"Machine Learning Toolkit for System Log File Reduction and Detection of Malicious Behavior","authors":"Ralph P. Ritchey, R. Perry","doi":"10.1109/INFOCOMWKSHPS51825.2021.9484572","DOIUrl":null,"url":null,"abstract":"The increasing use of encryption blinds traditional network-based intrusion detection systems (IDS) from performing deep packet inspection. An alternative data source for detecting malicious activity is necessary. Log files found on servers and desktop systems provide an alternative data source containing information about activity occurring on the device and over the network. The log files can be sizeable, making the transport, storage, and analysis difficult. Malicious behavior may appear as normal events in logs, not triggering an error or another obvious indicator, making automated detection challenging. The research described here utilizes a Python-based toolkit approach with unsupervised machine learning to reduce log file sizes and detect malicious behavior.","PeriodicalId":109588,"journal":{"name":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing use of encryption blinds traditional network-based intrusion detection systems (IDS) from performing deep packet inspection. An alternative data source for detecting malicious activity is necessary. Log files found on servers and desktop systems provide an alternative data source containing information about activity occurring on the device and over the network. The log files can be sizeable, making the transport, storage, and analysis difficult. Malicious behavior may appear as normal events in logs, not triggering an error or another obvious indicator, making automated detection challenging. The research described here utilizes a Python-based toolkit approach with unsupervised machine learning to reduce log file sizes and detect malicious behavior.
用于系统日志文件缩减和恶意行为检测的机器学习工具包
随着加密技术的日益普及,传统的基于网络的入侵检测系统(IDS)无法进行深度数据包检测。检测恶意活动的替代数据源是必要的。服务器和桌面系统上的日志文件提供了另一种数据源,其中包含有关设备上和网络上发生的活动的信息。日志文件可能相当大,使得传输、存储和分析变得困难。恶意行为可能在日志中显示为正常事件,不会触发错误或其他明显的指示符,从而使自动检测具有挑战性。本文描述的研究利用基于python的工具包方法和无监督机器学习来减少日志文件大小并检测恶意行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信