EnsembleNet: An improved COVID19 Prediction Model using Chest X-Ray Images

Yamuna Prasad, Nitin
{"title":"EnsembleNet: An improved COVID19 Prediction Model using Chest X-Ray Images","authors":"Yamuna Prasad, Nitin","doi":"10.1109/ICICT55905.2022.00031","DOIUrl":null,"url":null,"abstract":"This paper presents an improved COVID19 prediction model using chest X-Ray images with evolutionary algorithm based ensemble learning. The proposed model uses the transfer learning approach with state-of-the-art pre-trained models for training in isolation. Following the fine-tuning of the models, ensemble of the models is used for inferencing. The weight of the ensemble models are learned by the Differential Evolutional (DE) algorithm. The proposed model exploits the importance of each model in COVID19 inferencing. The proposed model is experimented on COVIDx-CXR2 dataset. Our study shows that the proposed EnsembleNet model outperforms the individual state-of-the-art models in terms of generalization accuracy.","PeriodicalId":273927,"journal":{"name":"2022 5th International Conference on Information and Computer Technologies (ICICT)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Information and Computer Technologies (ICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT55905.2022.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an improved COVID19 prediction model using chest X-Ray images with evolutionary algorithm based ensemble learning. The proposed model uses the transfer learning approach with state-of-the-art pre-trained models for training in isolation. Following the fine-tuning of the models, ensemble of the models is used for inferencing. The weight of the ensemble models are learned by the Differential Evolutional (DE) algorithm. The proposed model exploits the importance of each model in COVID19 inferencing. The proposed model is experimented on COVIDx-CXR2 dataset. Our study shows that the proposed EnsembleNet model outperforms the individual state-of-the-art models in terms of generalization accuracy.
基于胸部x射线图像的新型冠状病毒预测模型
本文提出了一种改进的基于集成学习进化算法的胸部x射线图像covid - 19预测模型。提出的模型使用迁移学习方法和最先进的预训练模型进行隔离训练。在对模型进行微调之后,使用模型的集成来进行推理。采用差分进化算法学习集成模型的权值。该模型利用了每个模型在covid - 19推理中的重要性。在covid - cxr2数据集上对该模型进行了实验。我们的研究表明,所提出的EnsembleNet模型在泛化精度方面优于单个最先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信