{"title":"Linearly dependent and concise subsets of a Segre variety depending on k factors","authors":"E. Ballico","doi":"10.4134/BKMS.B200248","DOIUrl":null,"url":null,"abstract":"We study linearly dependent subsets with prescribed cardinality, $s$, of a multiprojective space. If the set $S$ is a circuit, we give an upper bound on the number of factors of the minimal multiprojective space containing $S$, while if $S$ has higher dependency this may be not true without strong assumptions. We describe the dependent subsets $S$ with $\\#S=6$.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4134/BKMS.B200248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We study linearly dependent subsets with prescribed cardinality, $s$, of a multiprojective space. If the set $S$ is a circuit, we give an upper bound on the number of factors of the minimal multiprojective space containing $S$, while if $S$ has higher dependency this may be not true without strong assumptions. We describe the dependent subsets $S$ with $\#S=6$.