A constrained extended Kalman filter for target tracking

A. E. Nordsjo
{"title":"A constrained extended Kalman filter for target tracking","authors":"A. E. Nordsjo","doi":"10.1109/NRC.2004.1316407","DOIUrl":null,"url":null,"abstract":"An extended Kalman filter, EKF, is proposed for tracking the position and velocity of a moving target. The suggested method is based on a nonlinear model which, in addition, incorporates means for estimating possible nonlinearities in the measurements of the target position. In many practical scenarios, the initial estimates of target position and velocity deviate significantly from the true ones. In order to reduce the impact of erroneous initial conditions and, hence, obtain a faster initial convergence to an acceptable trajectory, a certain constrained form of the EKF, named the CEKF, is introduced. Although the original Kalman filter for a purely linear system is inherently stable, there is no guarantee that the linearized model used in the EKF gives a stable algorithm. Hence, it is interesting to note that the proposed CEKF under certain mild conditions renders an exponentially stable algorithm. It is shown that this latter method can conveniently be formulated as a nonlinear minimization problem with a quadratic inequality constraint.","PeriodicalId":268965,"journal":{"name":"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.2004.1316407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

An extended Kalman filter, EKF, is proposed for tracking the position and velocity of a moving target. The suggested method is based on a nonlinear model which, in addition, incorporates means for estimating possible nonlinearities in the measurements of the target position. In many practical scenarios, the initial estimates of target position and velocity deviate significantly from the true ones. In order to reduce the impact of erroneous initial conditions and, hence, obtain a faster initial convergence to an acceptable trajectory, a certain constrained form of the EKF, named the CEKF, is introduced. Although the original Kalman filter for a purely linear system is inherently stable, there is no guarantee that the linearized model used in the EKF gives a stable algorithm. Hence, it is interesting to note that the proposed CEKF under certain mild conditions renders an exponentially stable algorithm. It is shown that this latter method can conveniently be formulated as a nonlinear minimization problem with a quadratic inequality constraint.
目标跟踪的约束扩展卡尔曼滤波
提出了一种用于运动目标位置和速度跟踪的扩展卡尔曼滤波器EKF。所建议的方法是基于一个非线性模型,此外,该模型还包含了估计目标位置测量中可能存在的非线性的方法。在许多实际情况下,对目标位置和速度的初始估计与真实情况有很大的偏差。为了减少错误初始条件的影响,从而获得更快的初始收敛到可接受轨迹,引入了EKF的某种约束形式,称为CEKF。虽然纯线性系统的原始卡尔曼滤波器是固有稳定的,但不能保证EKF中使用的线性化模型给出稳定的算法。因此,值得注意的是,所提出的CEKF在某些温和条件下呈现指数稳定的算法。结果表明,后一种方法可以方便地表述为具有二次不等式约束的非线性最小化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信