The development of object-oriented knowledge base and adaptive motion planning for autonomous mobile robots

R. Luo, Meng-Hsien Lin, Shen Hong Shen
{"title":"The development of object-oriented knowledge base and adaptive motion planning for autonomous mobile robots","authors":"R. Luo, Meng-Hsien Lin, Shen Hong Shen","doi":"10.1109/IROS.2001.973344","DOIUrl":null,"url":null,"abstract":"Motion planning plays an important role in the field of autonomous mobile robots. We propose a hybrid intelligent system including the object-oriented knowledge base and adaptive motion planning (AMP) algorithm. There are four major procedures in the intelligent system: a priori environment building, on-line topology map generation, candidate path searching, and behavior commands generation. The adaptive motion planning (AMP) algorithm acquires the a priori defined map and the latest or dynamic information. The algorithm then determines path and generates a sequence of motion behavior description commands for navigation. The experimental results indicate that the object-oriented knowledge base can be updated easily. The AMP algorithm can produce the suitable path and behavior commands, and fuse these behaviors to navigate the mobile robot in the dynamic environment. The proposed method is implemented on the \"Chung Cheng I\" autonomous mobile robot to demonstrate the reliability and flexibility.","PeriodicalId":319679,"journal":{"name":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2001.973344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Motion planning plays an important role in the field of autonomous mobile robots. We propose a hybrid intelligent system including the object-oriented knowledge base and adaptive motion planning (AMP) algorithm. There are four major procedures in the intelligent system: a priori environment building, on-line topology map generation, candidate path searching, and behavior commands generation. The adaptive motion planning (AMP) algorithm acquires the a priori defined map and the latest or dynamic information. The algorithm then determines path and generates a sequence of motion behavior description commands for navigation. The experimental results indicate that the object-oriented knowledge base can be updated easily. The AMP algorithm can produce the suitable path and behavior commands, and fuse these behaviors to navigate the mobile robot in the dynamic environment. The proposed method is implemented on the "Chung Cheng I" autonomous mobile robot to demonstrate the reliability and flexibility.
自主移动机器人面向对象知识库与自适应运动规划的开发
运动规划在自主移动机器人领域中占有重要地位。提出了一种基于面向对象知识库和自适应运动规划(AMP)算法的混合智能系统。在智能系统中有四个主要的过程:先验环境的建立、在线拓扑地图的生成、候选路径的搜索和行为命令的生成。自适应运动规划(AMP)算法获取先验定义的地图和最新动态信息。然后,算法确定路径并生成一系列用于导航的运动行为描述命令。实验结果表明,该面向对象知识库易于更新。AMP算法可以生成合适的路径和行为命令,并将这些行为融合在一起,使移动机器人在动态环境中导航。在“中城一号”自主移动机器人上实施了该方法,验证了该方法的可靠性和灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信