Scott G. Ghiocel, J. Chow, D. Bertagnolli, Michael P. Razanousky, G. Stefopoulos, B. Fardanesh, D. Maragal, M. Swider, D. Sobajic
{"title":"Phasor-measurement-based voltage stability margin calculation for a power transfer interface with multiple injections and transfer paths","authors":"Scott G. Ghiocel, J. Chow, D. Bertagnolli, Michael P. Razanousky, G. Stefopoulos, B. Fardanesh, D. Maragal, M. Swider, D. Sobajic","doi":"10.1109/PSCC.2014.7038431","DOIUrl":null,"url":null,"abstract":"For complex power transfer interfaces or load areas with multiple in-feeds, we present a method for phasor-measurement-based calculation of voltage stability margins. In the case of complex transfer paths with multiple injections, a radial system approach may not be sufficient for voltage stability analysis. Our approach provides voltage stability margins considering the full fidelity of the transfer paths. In this paper, we extend a previously proposed phasor-measurement-based approach [1] and apply it to a voltage stability-limited power transfer interface using synchronized phasor measurements from loss-of-generation disturbance events. Previous work employed a simple radial system [2] or modeled a power transfer interface using only one generator [1]. In our approach, we use the PMU data to model multiple external injections that share the power transfer increase, and we employ a modified AQ-bus power flow method to compute the steady-state voltage stability margins [3]. We demonstrate the method using real PMU data from disturbance events in the US Eastern Interconnection.","PeriodicalId":155801,"journal":{"name":"2014 Power Systems Computation Conference","volume":"473 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Power Systems Computation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PSCC.2014.7038431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
For complex power transfer interfaces or load areas with multiple in-feeds, we present a method for phasor-measurement-based calculation of voltage stability margins. In the case of complex transfer paths with multiple injections, a radial system approach may not be sufficient for voltage stability analysis. Our approach provides voltage stability margins considering the full fidelity of the transfer paths. In this paper, we extend a previously proposed phasor-measurement-based approach [1] and apply it to a voltage stability-limited power transfer interface using synchronized phasor measurements from loss-of-generation disturbance events. Previous work employed a simple radial system [2] or modeled a power transfer interface using only one generator [1]. In our approach, we use the PMU data to model multiple external injections that share the power transfer increase, and we employ a modified AQ-bus power flow method to compute the steady-state voltage stability margins [3]. We demonstrate the method using real PMU data from disturbance events in the US Eastern Interconnection.