{"title":"Tapir: a language for verified OS kernel probes","authors":"Ilya Yanok, Nathaniel Nystrom","doi":"10.1145/2818302.2818303","DOIUrl":null,"url":null,"abstract":"Kernel probes allow code to be inserted into a running operating system kernel to gather information for debugging or profiling. Inserting code into the kernel raises a number of safety issues. Current solutions follow one of the two paths: a VM-based approach, where safety properties are checked dynamically by an interpreter, or a static-analysis approach, where probe code is guaranteed to be safe statically. While more attractive, existing static solutions depend on ad-hoc and error-prone analysis. We propose to explore enforcing safety properties using a type system, thus building our analysis on top of the well-studied ground of type theory.","PeriodicalId":170899,"journal":{"name":"Proceedings of the 8th Workshop on Programming Languages and Operating Systems","volume":"140 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th Workshop on Programming Languages and Operating Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818302.2818303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Kernel probes allow code to be inserted into a running operating system kernel to gather information for debugging or profiling. Inserting code into the kernel raises a number of safety issues. Current solutions follow one of the two paths: a VM-based approach, where safety properties are checked dynamically by an interpreter, or a static-analysis approach, where probe code is guaranteed to be safe statically. While more attractive, existing static solutions depend on ad-hoc and error-prone analysis. We propose to explore enforcing safety properties using a type system, thus building our analysis on top of the well-studied ground of type theory.