A Formal Analysis of Recommendation Quality of Adversarially-trained Recommenders

V. W. Anelli, Yashar Deldjoo, Tommaso Di Noia, Felice Antonio Merra
{"title":"A Formal Analysis of Recommendation Quality of Adversarially-trained Recommenders","authors":"V. W. Anelli, Yashar Deldjoo, Tommaso Di Noia, Felice Antonio Merra","doi":"10.1145/3459637.3482046","DOIUrl":null,"url":null,"abstract":"Recommender systems (RSs) employ user-item feedback, e.g., ratings, to match customers to personalized lists of products. Approaches to top-k recommendation mainly rely on Learning-To-Rank algorithms and, among them, the most widely adopted is Bayesian Personalized Ranking (BPR), which bases on a pair-wise optimization approach. Recently, BPR has been found vulnerable against adversarial perturbations of its model parameters. Adversarial Personalized Ranking (APR) mitigates this issue by robustifying BPR via an adversarial training procedure. The empirical improvements of APR's accuracy performance on BPR have led to its wide use in several recommender models. However, a key overlooked aspect has been the beyond-accuracy performance of APR, i.e., novelty, coverage, and amplification of popularity bias, considering that recent results suggest that BPR, the building block of APR, is sensitive to the intensification of biases and reduction of recommendation novelty. In this work, we model the learning characteristics of the BPR and APR optimization frameworks to give mathematical evidence that, when the feedback data have a tailed distribution, APR amplifies the popularity bias more than BPR due to an unbalanced number of received positive updates from short-head items. Using matrix factorization (MF), we empirically validate the theoretical results by performing preliminary experiments on two public datasets to compare BPR-MF and APR-MF performance on accuracy and beyond-accuracy metrics. The experimental results consistently show the degradation of novelty and coverage measures and a worrying amplification of bias.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Recommender systems (RSs) employ user-item feedback, e.g., ratings, to match customers to personalized lists of products. Approaches to top-k recommendation mainly rely on Learning-To-Rank algorithms and, among them, the most widely adopted is Bayesian Personalized Ranking (BPR), which bases on a pair-wise optimization approach. Recently, BPR has been found vulnerable against adversarial perturbations of its model parameters. Adversarial Personalized Ranking (APR) mitigates this issue by robustifying BPR via an adversarial training procedure. The empirical improvements of APR's accuracy performance on BPR have led to its wide use in several recommender models. However, a key overlooked aspect has been the beyond-accuracy performance of APR, i.e., novelty, coverage, and amplification of popularity bias, considering that recent results suggest that BPR, the building block of APR, is sensitive to the intensification of biases and reduction of recommendation novelty. In this work, we model the learning characteristics of the BPR and APR optimization frameworks to give mathematical evidence that, when the feedback data have a tailed distribution, APR amplifies the popularity bias more than BPR due to an unbalanced number of received positive updates from short-head items. Using matrix factorization (MF), we empirically validate the theoretical results by performing preliminary experiments on two public datasets to compare BPR-MF and APR-MF performance on accuracy and beyond-accuracy metrics. The experimental results consistently show the degradation of novelty and coverage measures and a worrying amplification of bias.
对抗性训练推荐者推荐质量的形式化分析
推荐系统(RSs)采用用户-物品反馈,例如评分,将客户与个性化的产品列表相匹配。top-k推荐的方法主要依赖于学习排序算法,其中应用最广泛的是基于成对优化方法的贝叶斯个性化排序(BPR)。最近,人们发现BPR容易受到模型参数对抗性扰动的影响。对抗性个性化排名(APR)通过对抗性训练程序增强BPR,缓解了这一问题。基于BPR的APR精度性能的实证改进使其在几种推荐模型中得到了广泛的应用。然而,一个被忽视的关键方面是APR的超准确性表现,即新颖性、覆盖率和流行偏差的放大,考虑到最近的研究结果表明,APR的组成部分BPR对偏见的加剧和推荐新颖性的降低很敏感。在这项工作中,我们对BPR和APR优化框架的学习特征进行了建模,并给出了数学证据,表明当反馈数据具有尾部分布时,由于收到的短头项目的积极更新数量不平衡,APR比BPR更能放大流行偏差。利用矩阵分解(MF),我们通过在两个公共数据集上进行初步实验来实证验证理论结果,比较BPR-MF和APR-MF在准确性和超准确性指标上的性能。实验结果一致表明,新颖性和覆盖措施的退化和令人担忧的偏见放大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信