A K-best orthogonal matching pursuit for compressive sensing

Pu-Hsuan Lin, S. Tsai, G. C. Chuang
{"title":"A K-best orthogonal matching pursuit for compressive sensing","authors":"Pu-Hsuan Lin, S. Tsai, G. C. Chuang","doi":"10.1109/ICASSP.2013.6638757","DOIUrl":null,"url":null,"abstract":"This paper proposes an orthogonal matching pursuit (OMP-) based recovering algorithm for compressive sensing problems. This algorithm can significantly improve recovering performance while it can still maintain reasonable computational complexity. Complexity analysis and simulation results are provided for the proposed algorithm and compared with other popular recovering schemes. We observe that the proposed algorithm can significantly improve the exact recovering performance compared to the OMP scheme. Moreover, in the cases with high compressed ratio, the proposed algorithm can even outperform the benchmark performance achieved by the subspace programming and linear programming.","PeriodicalId":183968,"journal":{"name":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"56 3-4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2013.6638757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper proposes an orthogonal matching pursuit (OMP-) based recovering algorithm for compressive sensing problems. This algorithm can significantly improve recovering performance while it can still maintain reasonable computational complexity. Complexity analysis and simulation results are provided for the proposed algorithm and compared with other popular recovering schemes. We observe that the proposed algorithm can significantly improve the exact recovering performance compared to the OMP scheme. Moreover, in the cases with high compressed ratio, the proposed algorithm can even outperform the benchmark performance achieved by the subspace programming and linear programming.
基于k -最优正交匹配追踪的压缩感知
提出了一种基于正交匹配追踪(OMP-)的压缩感知恢复算法。该算法在保持合理计算复杂度的前提下,显著提高了恢复性能。给出了算法的复杂度分析和仿真结果,并与其他流行的恢复方案进行了比较。我们观察到,与OMP方案相比,该算法可以显著提高精确恢复性能。此外,在高压缩比的情况下,该算法的性能甚至优于子空间规划和线性规划的基准性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信