Adaptive Digital Predistortion of RF Power Amplifiers Based on Memory Polynomial Model and Indirect Learning Architecture

Van-Kien Vu, V. Tran
{"title":"Adaptive Digital Predistortion of RF Power Amplifiers Based on Memory Polynomial Model and Indirect Learning Architecture","authors":"Van-Kien Vu, V. Tran","doi":"10.1109/EnT50437.2020.9431300","DOIUrl":null,"url":null,"abstract":"This paper presents approaches for modeling and simulating RF power amplifiers and increasing transmitter linearity using adaptive digital predistortion technique. The memory polynomial models, indirect learning architecture and coefficients update algorithms such as recursive prediction error method, Kalman filter and recursive least squares are considered. The simulation results in the DVB-T2 standard indicate that an adjacent channel leakage ratio correction of over 25 dB is obtained due to linearization.","PeriodicalId":129694,"journal":{"name":"2020 International Conference Engineering and Telecommunication (En&T)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference Engineering and Telecommunication (En&T)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EnT50437.2020.9431300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents approaches for modeling and simulating RF power amplifiers and increasing transmitter linearity using adaptive digital predistortion technique. The memory polynomial models, indirect learning architecture and coefficients update algorithms such as recursive prediction error method, Kalman filter and recursive least squares are considered. The simulation results in the DVB-T2 standard indicate that an adjacent channel leakage ratio correction of over 25 dB is obtained due to linearization.
基于记忆多项式模型和间接学习结构的射频功率放大器自适应数字预失真
本文介绍了射频功率放大器的建模和仿真方法,以及利用自适应数字预失真技术提高发射机线性度的方法。考虑了记忆多项式模型、间接学习结构和系数更新算法,如递归预测误差法、卡尔曼滤波和递归最小二乘。在DVB-T2标准中的仿真结果表明,由于线性化,相邻信道的漏率校正超过25 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信