Server-side I/O coordination for parallel file systems

Huaiming Song, Yanlong Yin, Xian-He Sun, R. Thakur, S. Lang
{"title":"Server-side I/O coordination for parallel file systems","authors":"Huaiming Song, Yanlong Yin, Xian-He Sun, R. Thakur, S. Lang","doi":"10.1145/2063384.2063407","DOIUrl":null,"url":null,"abstract":"Parallel file systems have become a common component of modern high-end computers to mask the ever-increasing gap between disk data access speed and CPU computing power. However, while working well for certain applications, current parallel file systems lack the ability to effectively handle concurrent I/O requests with data synchronization needs, whereas concurrent I/O is the norm in data-intensive applications. Recognizing that an I/O request will not complete until all involved file servers in the parallel file system have completed their parts, in this paper we propose a server-side I/O coordination scheme for parallel file systems. The basic idea is to coordinate file servers to serve one application at a time in order to reduce the completion time, and in the meantime maintain the server utilization and fairness. A window-wide coordination concept is introduced to serve our purpose. We present the proposed I/O coordination algorithm and its corresponding analysis of average completion time in this study. We also implement a prototype of the proposed scheme under the PVFS2 file system and MPI-IO environment. Experimental results demonstrate that the proposed scheme can reduce average completion time by 8% to 46%, and provide higher I/O bandwidth than that of default data access strategies adopted by PVFS2 for heavy I/O workloads. Experimental results also show that the server-side I/O coordination scheme has good scalability.","PeriodicalId":358797,"journal":{"name":"2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063384.2063407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

Parallel file systems have become a common component of modern high-end computers to mask the ever-increasing gap between disk data access speed and CPU computing power. However, while working well for certain applications, current parallel file systems lack the ability to effectively handle concurrent I/O requests with data synchronization needs, whereas concurrent I/O is the norm in data-intensive applications. Recognizing that an I/O request will not complete until all involved file servers in the parallel file system have completed their parts, in this paper we propose a server-side I/O coordination scheme for parallel file systems. The basic idea is to coordinate file servers to serve one application at a time in order to reduce the completion time, and in the meantime maintain the server utilization and fairness. A window-wide coordination concept is introduced to serve our purpose. We present the proposed I/O coordination algorithm and its corresponding analysis of average completion time in this study. We also implement a prototype of the proposed scheme under the PVFS2 file system and MPI-IO environment. Experimental results demonstrate that the proposed scheme can reduce average completion time by 8% to 46%, and provide higher I/O bandwidth than that of default data access strategies adopted by PVFS2 for heavy I/O workloads. Experimental results also show that the server-side I/O coordination scheme has good scalability.
并行文件系统的服务器端I/O协调
并行文件系统已经成为现代高端计算机的常见组件,以掩盖磁盘数据访问速度和CPU计算能力之间不断扩大的差距。然而,尽管对于某些应用程序工作得很好,但当前并行文件系统缺乏有效处理具有数据同步需求的并发I/O请求的能力,而并发I/O在数据密集型应用程序中是常态。认识到一个I/O请求将不会完成,直到并行文件系统中所有涉及的文件服务器都完成了他们的部分,在本文中,我们提出了一个并行文件系统的服务器端I/O协调方案。其基本思想是协调文件服务器一次为一个应用程序服务,以减少完成时间,同时保持服务器的利用率和公平性。为了达到我们的目的,引入了一个窗口范围的协调概念。本文提出了I/O协调算法,并对其平均完成时间进行了相应的分析。我们还在PVFS2文件系统和MPI-IO环境下实现了该方案的原型。实验结果表明,与PVFS2采用的默认数据访问策略相比,该方案可将平均完成时间缩短8% ~ 46%,并且在高I/O工作负载下提供更高的I/O带宽。实验结果还表明,服务器端I/O协调方案具有良好的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信