Sparse Tensor Decomposition for Multi-task Interaction Selection

Jun-Yong Jeong, C. Jun
{"title":"Sparse Tensor Decomposition for Multi-task Interaction Selection","authors":"Jun-Yong Jeong, C. Jun","doi":"10.1109/ICBK.2019.00022","DOIUrl":null,"url":null,"abstract":"Multi-task learning aims to improve the generalization performance of related tasks based on simultaneous learning where prediction models share information. Recently, identifying significant feature interaction attracts more interests because of its practical importance. We propose a second-order interaction method for multi-task learning, which identifies significant linear and interaction terms. We develop a sparse tensor decomposition based on a feature augmentation and a symmetrization trick to express the prediction models of related tasks as the linear combinations of the shared parameters. We show that the proposed method could generate diverse relationships between linear and interaction terms. In minimizing the resulting multiconvex objective function, we select an initial value by deriving unbiased estimators and proposing a tensor decomposition. Experiments on synthetic and benchmark datasets demonstrate the effectiveness of the proposed method.","PeriodicalId":383917,"journal":{"name":"2019 IEEE International Conference on Big Knowledge (ICBK)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2019.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Multi-task learning aims to improve the generalization performance of related tasks based on simultaneous learning where prediction models share information. Recently, identifying significant feature interaction attracts more interests because of its practical importance. We propose a second-order interaction method for multi-task learning, which identifies significant linear and interaction terms. We develop a sparse tensor decomposition based on a feature augmentation and a symmetrization trick to express the prediction models of related tasks as the linear combinations of the shared parameters. We show that the proposed method could generate diverse relationships between linear and interaction terms. In minimizing the resulting multiconvex objective function, we select an initial value by deriving unbiased estimators and proposing a tensor decomposition. Experiments on synthetic and benchmark datasets demonstrate the effectiveness of the proposed method.
稀疏张量分解用于多任务交互选择
多任务学习的目的是在预测模型共享信息的同时学习的基础上提高相关任务的泛化性能。近年来,识别显著特征交互因其重要的现实意义而受到越来越多的关注。我们提出了一种用于多任务学习的二阶交互方法,该方法可以识别重要的线性项和交互项。本文提出了一种基于特征增强和对称化的稀疏张量分解方法,将相关任务的预测模型表示为共享参数的线性组合。结果表明,该方法可以生成线性项和交互项之间的多种关系。在最小化所得到的多凸目标函数时,我们通过推导无偏估计量和提出张量分解来选择初始值。在综合数据集和基准数据集上的实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信