{"title":"Classification of benign and malignant tumors in histopathology images","authors":"Afiqah Abu Samah, M. F. A. Fauzi, Sarina Mansor","doi":"10.1109/ICSIPA.2017.8120587","DOIUrl":null,"url":null,"abstract":"Breast cancer leads the list of cancer that act on women worldwide. It starts when cells in the breast begin to build up beyond control. These cells normally create a tumour that can usually be seen on an x-ray or felt as a lump. Analysing and grading the tumour will take up much of a pathologist time. Pathologists have been largely diagnosing disease the same way for the past years, by manually reviewing images under a microscope. Thus, to help the pathologists improve accuracy and significantly change the way breast cancer been diagnosed, this paper presents an automated classification program. BreakHis dataset was used which build of 7909 breast tumor images gathered from 82 patients. This system is developed in order to categorize the cancer cells into two classes of cancer which are benign and malignant. The classification system compared different types of feature extractors using k-nearest neighbours classifier to efficiently observe the performance of the classification system. An extensive set of experiments showed that the overall accuracy rates range from 83% to 86%.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
Breast cancer leads the list of cancer that act on women worldwide. It starts when cells in the breast begin to build up beyond control. These cells normally create a tumour that can usually be seen on an x-ray or felt as a lump. Analysing and grading the tumour will take up much of a pathologist time. Pathologists have been largely diagnosing disease the same way for the past years, by manually reviewing images under a microscope. Thus, to help the pathologists improve accuracy and significantly change the way breast cancer been diagnosed, this paper presents an automated classification program. BreakHis dataset was used which build of 7909 breast tumor images gathered from 82 patients. This system is developed in order to categorize the cancer cells into two classes of cancer which are benign and malignant. The classification system compared different types of feature extractors using k-nearest neighbours classifier to efficiently observe the performance of the classification system. An extensive set of experiments showed that the overall accuracy rates range from 83% to 86%.