LiDAR-guided analysis of airborne hyperspectral data

K. Niemann, G. Frazer, R. Loos, F. Visintini
{"title":"LiDAR-guided analysis of airborne hyperspectral data","authors":"K. Niemann, G. Frazer, R. Loos, F. Visintini","doi":"10.1109/WHISPERS.2009.5289029","DOIUrl":null,"url":null,"abstract":"This paper describes a new framework to the collection and fusion of multisensor airborne LiDAR and hyperspectral data. We describe a data fusion philosophy that provides a spatially precise positioning of hyperspectral data based on discrete first and last return LiDAR data. Three dimensional objects defined by the LiDAR data are then used to sample optimal spectra for subsequent analysis. The sampled spectra retain their positioning metadata and so can be mapped back into geographic space for further analysis. While the paper presents this philosophy within the context of a species classification, other analytical analysis can be performed.","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5289029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper describes a new framework to the collection and fusion of multisensor airborne LiDAR and hyperspectral data. We describe a data fusion philosophy that provides a spatially precise positioning of hyperspectral data based on discrete first and last return LiDAR data. Three dimensional objects defined by the LiDAR data are then used to sample optimal spectra for subsequent analysis. The sampled spectra retain their positioning metadata and so can be mapped back into geographic space for further analysis. While the paper presents this philosophy within the context of a species classification, other analytical analysis can be performed.
激光雷达制导机载高光谱数据分析
本文提出了一种多传感器机载激光雷达与高光谱数据采集与融合的新框架。我们描述了一种数据融合理念,该理念基于离散的首次和最后返回激光雷达数据,提供高光谱数据的空间精确定位。然后使用激光雷达数据定义的三维物体对最佳光谱进行采样,以进行后续分析。采样的光谱保留了它们的定位元数据,因此可以映射回地理空间以供进一步分析。虽然本文在物种分类的背景下提出了这种哲学,但可以进行其他分析分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信