Generalized tensor product Bézier surfaces

Xuli Han, Y. Ren, Xinru Liu
{"title":"Generalized tensor product Bézier surfaces","authors":"Xuli Han, Y. Ren, Xinru Liu","doi":"10.1109/PIC.2010.5688019","DOIUrl":null,"url":null,"abstract":"In order to adjust effectively the shape of the tensor product Bézier surfaces and to connect conveniently the surface patches, generalized tensor product Bézier surfaces with local directional control derivative vectors are given in this paper. The given surface expression is a modification based on a kind of higher approximate polynomials of a function. Taking the tensor Bézier surfaces as a special case, the given surface is an effective modification for the Bézier surface of higher degree by adjusting the directional target derivative vectors. A method for connecting surface patches on rectangle domain is presented; it can be used to realize C1 continuous connection of two surface patches without any constraint conditions for the control grid points.","PeriodicalId":142910,"journal":{"name":"2010 IEEE International Conference on Progress in Informatics and Computing","volume":"75 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Progress in Informatics and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC.2010.5688019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to adjust effectively the shape of the tensor product Bézier surfaces and to connect conveniently the surface patches, generalized tensor product Bézier surfaces with local directional control derivative vectors are given in this paper. The given surface expression is a modification based on a kind of higher approximate polynomials of a function. Taking the tensor Bézier surfaces as a special case, the given surface is an effective modification for the Bézier surface of higher degree by adjusting the directional target derivative vectors. A method for connecting surface patches on rectangle domain is presented; it can be used to realize C1 continuous connection of two surface patches without any constraint conditions for the control grid points.
广义张量积bsamizier曲面
为了有效地调整张量积bsamzier曲面的形状并方便地连接曲面块,本文给出了具有局部方向控制导数向量的广义张量积bsamzier曲面。给出的曲面表达式是基于函数的一类高近似多项式的修正。以张量bsamzier曲面为特例,给出的曲面是通过调整方向目标导数向量对更高次bsamzier曲面的有效修正。提出了一种矩形域上曲面贴片的连接方法;可以实现两个曲面贴片的C1连续连接,对控制网格点没有任何约束条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信