Transfer Learning using CNN for Handwritten Devanagari Character Recognition

Nagender Aneja, Sandhya Aneja
{"title":"Transfer Learning using CNN for Handwritten Devanagari Character Recognition","authors":"Nagender Aneja, Sandhya Aneja","doi":"10.1109/ICAIT47043.2019.8987286","DOIUrl":null,"url":null,"abstract":"This paper presents an analysis of pre-trained models to recognize handwritten Devanagari alphabets using transfer learning for Deep Convolution Neural Network(DCNN). This research implements AlexNet, DenseNet, Vgg, and Inception ConvNet as a fixed feature extractor. We implemented 15 epochs for each of AlexNet, DenseNet 121, DenseNet 201, Vgg 11, Vgg 16, Vgg 19, and Inception V3.Results show that Inception V3 performs better in terms of accuracy achieving 99% accuracy with average epoch time 16.3 minutes while AlexNet performs fastest with 2.2 minutes per epoch and achieving 98%accuracy.","PeriodicalId":221994,"journal":{"name":"2019 1st International Conference on Advances in Information Technology (ICAIT)","volume":"292 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 1st International Conference on Advances in Information Technology (ICAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIT47043.2019.8987286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

Abstract

This paper presents an analysis of pre-trained models to recognize handwritten Devanagari alphabets using transfer learning for Deep Convolution Neural Network(DCNN). This research implements AlexNet, DenseNet, Vgg, and Inception ConvNet as a fixed feature extractor. We implemented 15 epochs for each of AlexNet, DenseNet 121, DenseNet 201, Vgg 11, Vgg 16, Vgg 19, and Inception V3.Results show that Inception V3 performs better in terms of accuracy achieving 99% accuracy with average epoch time 16.3 minutes while AlexNet performs fastest with 2.2 minutes per epoch and achieving 98%accuracy.
使用CNN迁移学习进行手写德文汉字识别
本文提出了一种基于深度卷积神经网络(DCNN)迁移学习的手写体Devanagari字母识别预训练模型。本研究实现了AlexNet、DenseNet、Vgg和Inception ConvNet作为固定特征提取器。我们分别为AlexNet、DenseNet 121、DenseNet 201、Vgg 11、Vgg 16、Vgg 19和Inception V3实现了15个epoch。结果表明,Inception V3在准确率方面表现更好,平均历元时间为16.3分钟,达到99%的准确率,而AlexNet在每个历元2.2分钟的速度上表现最快,达到98%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信