MPPT for Photovoltaic System Using Adaptive Fuzzy Backstepping Sliding Mode Control

Attoui Hadjira, Behih Khalissa, Bouchama Ziyad, Ziyad Nadjat
{"title":"MPPT for Photovoltaic System Using Adaptive Fuzzy Backstepping Sliding Mode Control","authors":"Attoui Hadjira, Behih Khalissa, Bouchama Ziyad, Ziyad Nadjat","doi":"10.18280/ejee.230505","DOIUrl":null,"url":null,"abstract":"This paper presents an intelligent monitoring control strategy for a maximum power point tracking (MPPT) in photovoltaic (PV) system applications. The design of the proposed nonlinear adaptive control law (AFBSMC) is formulated based on adaptive fuzzy systems, backstepping approach and sliding mode technique to maximize the power output of a PV system under various sets of conditions and parameters variation. Unlike many conventional controllers, the main contribution of the present paper provides a soften control law which useful to handle parameters variations due to the different operating conditions occurring on the PV system and makes the controller easy to implement. This aim is achieved using fuzzy systems in an adaptive scheme to approximate the switching control function of the global control law while backstepping sliding mode control compensates uncertainties and external disturbances. The analytical stability proof of the closed-loop system is corroborated via Lyapunov synthesis while numerical simulations of different operating conditions of a PV system is conducted to validate the effectiveness of the proposed approach.","PeriodicalId":340029,"journal":{"name":"European Journal of Electrical Engineering","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/ejee.230505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents an intelligent monitoring control strategy for a maximum power point tracking (MPPT) in photovoltaic (PV) system applications. The design of the proposed nonlinear adaptive control law (AFBSMC) is formulated based on adaptive fuzzy systems, backstepping approach and sliding mode technique to maximize the power output of a PV system under various sets of conditions and parameters variation. Unlike many conventional controllers, the main contribution of the present paper provides a soften control law which useful to handle parameters variations due to the different operating conditions occurring on the PV system and makes the controller easy to implement. This aim is achieved using fuzzy systems in an adaptive scheme to approximate the switching control function of the global control law while backstepping sliding mode control compensates uncertainties and external disturbances. The analytical stability proof of the closed-loop system is corroborated via Lyapunov synthesis while numerical simulations of different operating conditions of a PV system is conducted to validate the effectiveness of the proposed approach.
基于自适应模糊反步滑模控制的光伏系统最大功率跟踪控制
针对光伏发电系统中最大功率点跟踪(MPPT)问题,提出了一种智能监控策略。提出了一种基于自适应模糊系统、反演方法和滑模技术的非线性自适应控制律(AFBSMC)设计,以实现光伏系统在各种条件和参数变化下的最大输出功率。与许多传统控制器不同,本文的主要贡献是提供了一个软控制律,该律有助于处理由于PV系统上发生的不同运行条件而引起的参数变化,并使控制器易于实现。采用模糊系统自适应逼近全局控制律的切换控制函数,而反步滑模控制则补偿不确定性和外部干扰。通过Lyapunov综合验证了闭环系统的解析稳定性证明,并对光伏系统的不同运行条件进行了数值模拟,验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信