Calibration of nonlocal damping model based on numerical simulation results

{"title":"Calibration of nonlocal damping model based on numerical simulation results","authors":"","doi":"10.15862/16sats319","DOIUrl":null,"url":null,"abstract":"The paper is devoted to polymer composite beams dynamic behavior simulation. The nonlocal damping model is used as a model of the internal friction. The vibration process is considered in this paper using the beam with fixed ends as an example. Equation of beam motion considering nonlocal damping is solved by Galerkin method to develop the model. The required number of eigenmodes is obtained for the beam under an instantly applied distributed load. The influence of nonlocal damping model parameters variation on the beam vibration process simulation results is considered under a periodic deterministic distributed load. The calibration of nonlocal damping model consists of defining its parameter known as influence distance which characterize the level of the nonlocal properties in material. Calibration is carried out with the least squares method using the numerical simulation data. For this purpose the results of 3D finite element modeling of thermoset vinyl ester fiber reinforced plastic beam vibrations under the instantly applied load were used. The 3D finite element model of the beam was created in SIMULIA Abaqus taking into account the orthotropic properties of the material. The calibrated model was justified for the beams with changed geometry. The results presented in this paper were obtained during the research for the PhD thesis.","PeriodicalId":145434,"journal":{"name":"Russian journal of transport engineering","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian journal of transport engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15862/16sats319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper is devoted to polymer composite beams dynamic behavior simulation. The nonlocal damping model is used as a model of the internal friction. The vibration process is considered in this paper using the beam with fixed ends as an example. Equation of beam motion considering nonlocal damping is solved by Galerkin method to develop the model. The required number of eigenmodes is obtained for the beam under an instantly applied distributed load. The influence of nonlocal damping model parameters variation on the beam vibration process simulation results is considered under a periodic deterministic distributed load. The calibration of nonlocal damping model consists of defining its parameter known as influence distance which characterize the level of the nonlocal properties in material. Calibration is carried out with the least squares method using the numerical simulation data. For this purpose the results of 3D finite element modeling of thermoset vinyl ester fiber reinforced plastic beam vibrations under the instantly applied load were used. The 3D finite element model of the beam was created in SIMULIA Abaqus taking into account the orthotropic properties of the material. The calibrated model was justified for the beams with changed geometry. The results presented in this paper were obtained during the research for the PhD thesis.
基于数值模拟结果的非局部阻尼模型标定
本文研究了聚合物复合材料梁的动力性能模拟。采用非局部阻尼模型作为内摩擦模型。本文以端部固定梁为例,研究了梁的振动过程。采用伽辽金法求解考虑非局部阻尼的梁运动方程,建立模型。得到了瞬时分布荷载作用下梁的本征模态个数。考虑了周期性确定性分布荷载作用下非局部阻尼模型参数变化对梁振动过程仿真结果的影响。非局部阻尼模型的标定包括定义表征材料非局部特性水平的影响距离参数。利用数值模拟数据,采用最小二乘法进行标定。为此,采用了热固性乙烯酯纤维增强塑料梁在瞬时载荷作用下振动的三维有限元建模结果。考虑材料的正交各向异性,在SIMULIA Abaqus中建立了梁的三维有限元模型。校正后的模型对于改变几何形状的梁是合理的。本文的研究结果是在博士论文的研究过程中获得的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信