Fractional order state space canonical model identification using fractional order information filter

B. Safarinejadian, M. Asad
{"title":"Fractional order state space canonical model identification using fractional order information filter","authors":"B. Safarinejadian, M. Asad","doi":"10.1109/AISP.2015.7123479","DOIUrl":null,"url":null,"abstract":"In the present paper the identification and estimation problem of a fractional order state space system will be addressed. This paper presents a fractional order information filter and also a hierarchical identification algorithm to identify and estimate parameters and states of a fractional order system. Then, merging this algorithm with fractional order information filter, a novel identification method based on hierarchical identification theory is introduced to reduce the computational complexity. Finally, the applicability and performance of this platform on an exemplary system is examined.","PeriodicalId":405857,"journal":{"name":"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)","volume":"65 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP.2015.7123479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the present paper the identification and estimation problem of a fractional order state space system will be addressed. This paper presents a fractional order information filter and also a hierarchical identification algorithm to identify and estimate parameters and states of a fractional order system. Then, merging this algorithm with fractional order information filter, a novel identification method based on hierarchical identification theory is introduced to reduce the computational complexity. Finally, the applicability and performance of this platform on an exemplary system is examined.
基于分数阶信息过滤器的分数阶状态空间正则模型识别
本文主要研究分数阶状态空间系统的辨识与估计问题。提出了一种分数阶信息滤波器和一种分层识别算法,用于辨识和估计分数阶系统的参数和状态。然后,将该算法与分数阶信息滤波器相结合,提出了一种基于层次识别理论的新型识别方法,降低了计算复杂度。最后,对该平台在实例系统上的适用性和性能进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信