{"title":"Several Congruences Related to Harmonic Numbers","authors":"","doi":"10.52280/pujm.2021.530801","DOIUrl":null,"url":null,"abstract":"Let p be a prime greater than or equal to 5. In this paper, by using the harmonic numbers and Fermat quotient we establish congruences\ninvolving the sums\np−1 X2\nk=1\nµ\nk\nr\n¶\nHk,\np−1 X2\nk=1\n¡\n2k\nk\n¢2\n16k H\n(2)\nk\nand\np−1 X2\nk=1\n1\n4\nk\nµ\n2k\nk\n¶\nH\n(3)\nk\n.\nFor example,\np−1 X2\nk=0\n¡\n2k\nk\n¢2\n16k H\n(2)\nk ≡ 4E2p−4 − 8Ep−3\n¡\nmod p\n2\n¢\n,\nwhere H\n(m)\nk\nare the generalized harmonic numbers of order m and En are\nEuler numbers","PeriodicalId":205373,"journal":{"name":"Punjab University Journal of Mathematics","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Punjab University Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52280/pujm.2021.530801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let p be a prime greater than or equal to 5. In this paper, by using the harmonic numbers and Fermat quotient we establish congruences
involving the sums
p−1 X2
k=1
µ
k
r
¶
Hk,
p−1 X2
k=1
¡
2k
k
¢2
16k H
(2)
k
and
p−1 X2
k=1
1
4
k
µ
2k
k
¶
H
(3)
k
.
For example,
p−1 X2
k=0
¡
2k
k
¢2
16k H
(2)
k ≡ 4E2p−4 − 8Ep−3
¡
mod p
2
¢
,
where H
(m)
k
are the generalized harmonic numbers of order m and En are
Euler numbers