Dynamic time-aware attention to speaker roles and contexts for spoken language understanding

Po-Chun Chen, Ta-Chung Chi, Shang-Yu Su, Yun-Nung (Vivian) Chen
{"title":"Dynamic time-aware attention to speaker roles and contexts for spoken language understanding","authors":"Po-Chun Chen, Ta-Chung Chi, Shang-Yu Su, Yun-Nung (Vivian) Chen","doi":"10.1109/ASRU.2017.8268985","DOIUrl":null,"url":null,"abstract":"Spoken language understanding (SLU) is an essential component in conversational systems. Most SLU component treats each utterance independently, and then the following components aggregate the multi-turn information in the separate phases. In order to avoid error propagation and effectively utilize contexts, prior work leveraged history for contextual SLU. However, the previous model only paid attention to the content in history utterances without considering their temporal information and speaker roles. In the dialogues, the most recent utterances should be more important than the least recent ones. Furthermore, users usually pay attention to 1) self history for reasoning and 2) others utterances for listening, the speaker of the utterances may provides informative cues to help understanding. Therefore, this paper proposes an attention-based network that additionally leverages temporal information and speaker role for better SLU, where the attention to contexts and speaker roles can be automatically learned in an end-to-end manner. The experiments on the benchmark Dialogue State Tracking Challenge 4 (DSTC4) dataset show that the time-aware dynamic role attention networks significantly improve the understanding performance1.","PeriodicalId":290868,"journal":{"name":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"133 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2017.8268985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Spoken language understanding (SLU) is an essential component in conversational systems. Most SLU component treats each utterance independently, and then the following components aggregate the multi-turn information in the separate phases. In order to avoid error propagation and effectively utilize contexts, prior work leveraged history for contextual SLU. However, the previous model only paid attention to the content in history utterances without considering their temporal information and speaker roles. In the dialogues, the most recent utterances should be more important than the least recent ones. Furthermore, users usually pay attention to 1) self history for reasoning and 2) others utterances for listening, the speaker of the utterances may provides informative cues to help understanding. Therefore, this paper proposes an attention-based network that additionally leverages temporal information and speaker role for better SLU, where the attention to contexts and speaker roles can be automatically learned in an end-to-end manner. The experiments on the benchmark Dialogue State Tracking Challenge 4 (DSTC4) dataset show that the time-aware dynamic role attention networks significantly improve the understanding performance1.
对说话者角色和语境的动态时间意识关注有助于口语理解
口语理解(SLU)是会话系统的重要组成部分。大多数SLU分量对每个话语进行独立处理,随后的分量将多回合信息聚合在不同的相位中。为了避免错误传播并有效地利用上下文,之前的工作利用了上下文SLU的历史。然而,以往的模型只关注历史话语的内容,而没有考虑历史话语的时间信息和说话人的角色。在对话中,最近的话语应该比最近的话语更重要。此外,用户通常会注意1)自己的历史来进行推理,2)别人的话语来倾听,话语的说话者可能会提供信息线索来帮助理解。因此,本文提出了一个基于注意的网络,该网络额外利用时间信息和说话人角色来实现更好的SLU,其中对上下文和说话人角色的注意可以以端到端方式自动学习。在基准对话状态跟踪挑战4 (DSTC4)数据集上的实验表明,时间感知的动态角色关注网络显著提高了理解性能1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信