Gabriel Henrique Wienhage, Eloá Suelen Ramos, L. Chiarello, V. Botton, V. Wiggers
{"title":"Acidity Reduction of Bio-Oil by Methylic Esterification Reactions","authors":"Gabriel Henrique Wienhage, Eloá Suelen Ramos, L. Chiarello, V. Botton, V. Wiggers","doi":"10.47444/AMOGJ.V2I2.4","DOIUrl":null,"url":null,"abstract":"An alternative to fossil fuels is the use of triglyceride biomass for conversion to biofuel by the thermal cracking process, also known as pyrolysis. The liquid phase, called bio-oil, has physicochemical properties like petroleum-derived fuels. One of the undesirable characteristics of bio-oil is the high acidity index, due to the presence of short-chain carboxylic acids in its composition. This feature makes refining and use inviable. The objective of this work was to perform esterification reactions using bio-oil, produced from soybean oil pyrolysis already characterized, in order to reduce its acidity index. Besides that, the esterified bio-oil was submitted to different washing experiments to decrease even more the final acidity. For the esterification reaction 25 g of bio-oil was used at a temperature of 64 °C, using from 0.8 to 2.2% sulfuric acid and 0.5 to 99.5% mass ratio of methyl alcohol and bio-oil. The highest acidity index reduction after 20 min was 81.2%, the esterified bio-oil reduced from 129 to 32.4 mg KOH g-1. Esterification reaction followed by washing and neutralization can decrease even more those values and, the acidity index can reach zero.","PeriodicalId":114915,"journal":{"name":"Angolan Mineral, Oil & Gas Journal","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angolan Mineral, Oil & Gas Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47444/AMOGJ.V2I2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
An alternative to fossil fuels is the use of triglyceride biomass for conversion to biofuel by the thermal cracking process, also known as pyrolysis. The liquid phase, called bio-oil, has physicochemical properties like petroleum-derived fuels. One of the undesirable characteristics of bio-oil is the high acidity index, due to the presence of short-chain carboxylic acids in its composition. This feature makes refining and use inviable. The objective of this work was to perform esterification reactions using bio-oil, produced from soybean oil pyrolysis already characterized, in order to reduce its acidity index. Besides that, the esterified bio-oil was submitted to different washing experiments to decrease even more the final acidity. For the esterification reaction 25 g of bio-oil was used at a temperature of 64 °C, using from 0.8 to 2.2% sulfuric acid and 0.5 to 99.5% mass ratio of methyl alcohol and bio-oil. The highest acidity index reduction after 20 min was 81.2%, the esterified bio-oil reduced from 129 to 32.4 mg KOH g-1. Esterification reaction followed by washing and neutralization can decrease even more those values and, the acidity index can reach zero.