Markov-based failure prediction for human motion analysis

S. Dockstader, Nikita S. Imennov, A. Tekalp
{"title":"Markov-based failure prediction for human motion analysis","authors":"S. Dockstader, Nikita S. Imennov, A. Tekalp","doi":"10.1109/ICCV.2003.1238638","DOIUrl":null,"url":null,"abstract":"This paper presents a new method of detecting and predicting motion tracking failures with applications in human motion and gait analysis. We define a tracking failure as an event and describe its temporal characteristics using a hidden Markov model (HMM). This stochastic model is trained using previous examples of tracking failures. We derive vector observations for the HMM using the noise covariance matrices characterizing a tracked, 3D structural model of the human body. We show a causal relationship between the conditional output probability of the HMM, as transformed using a logarithmic mapping function, and impending tracking failures. Results are illustrated on several multi-view sequences of complex human motion.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"56 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a new method of detecting and predicting motion tracking failures with applications in human motion and gait analysis. We define a tracking failure as an event and describe its temporal characteristics using a hidden Markov model (HMM). This stochastic model is trained using previous examples of tracking failures. We derive vector observations for the HMM using the noise covariance matrices characterizing a tracked, 3D structural model of the human body. We show a causal relationship between the conditional output probability of the HMM, as transformed using a logarithmic mapping function, and impending tracking failures. Results are illustrated on several multi-view sequences of complex human motion.
基于马尔可夫的人体运动分析失效预测
本文提出了一种检测和预测运动跟踪故障的新方法,并在人体运动和步态分析中应用。我们将跟踪故障定义为事件,并使用隐马尔可夫模型(HMM)描述其时间特征。这个随机模型是用之前跟踪失败的例子来训练的。我们使用表征跟踪的人体三维结构模型的噪声协方差矩阵来推导HMM的矢量观测值。我们展示了HMM的条件输出概率(使用对数映射函数转换)与即将发生的跟踪故障之间的因果关系。结果说明了几个多视图序列的复杂人体运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信