Using Deep Learning to Classify Saccade Direction from Brain Activity

Ard Kastrati, M. Płomecka, Roger Wattenhofer, N. Langer
{"title":"Using Deep Learning to Classify Saccade Direction from Brain Activity","authors":"Ard Kastrati, M. Płomecka, Roger Wattenhofer, N. Langer","doi":"10.1145/3448018.3458014","DOIUrl":null,"url":null,"abstract":"We present first insights into our project that aims to develop an Electroencephalography (EEG) based Eye-Tracker. Our approach is tested and validated on a large dataset of simultaneously recorded EEG and infrared video-based Eye-Tracking, serving as ground truth. We compared several state-of-the-art neural network architectures for time series classification: InceptionTime, EEGNet, and investigated other architectures such as convolutional neural networks (CNN) with Xception modules and Pyramidal CNN. We prepared and tested these architectures with our rich dataset and obtained a remarkable accuracy of the left/right saccades direction classification (94.8 %) for the InceptionTime network, after hyperparameter tuning.","PeriodicalId":226088,"journal":{"name":"ACM Symposium on Eye Tracking Research and Applications","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Symposium on Eye Tracking Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3448018.3458014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We present first insights into our project that aims to develop an Electroencephalography (EEG) based Eye-Tracker. Our approach is tested and validated on a large dataset of simultaneously recorded EEG and infrared video-based Eye-Tracking, serving as ground truth. We compared several state-of-the-art neural network architectures for time series classification: InceptionTime, EEGNet, and investigated other architectures such as convolutional neural networks (CNN) with Xception modules and Pyramidal CNN. We prepared and tested these architectures with our rich dataset and obtained a remarkable accuracy of the left/right saccades direction classification (94.8 %) for the InceptionTime network, after hyperparameter tuning.
利用深度学习从大脑活动中分类扫视方向
我们提出了我们的项目的第一个见解,旨在开发一个基于脑电图(EEG)的眼动仪。我们的方法在同时记录的脑电图和基于红外视频的眼球追踪的大型数据集上进行了测试和验证,作为地面事实。我们比较了几种最先进的用于时间序列分类的神经网络架构:InceptionTime、EEGNet,并研究了其他架构,如卷积神经网络(CNN)与xeption模块和金字塔CNN。我们用丰富的数据集准备和测试了这些架构,并在超参数调优后,为InceptionTime网络获得了显著的左/右扫视方向分类精度(94.8%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信