{"title":"Variational Auto-Encoder Model and Federated Approach for Non-Intrusive Load Monitoring in Smart Homes","authors":"Shamisa Kaspour, A. Yassine","doi":"10.1109/ISCC58397.2023.10217998","DOIUrl":null,"url":null,"abstract":"Non-Intrusive Load Monitoring (NILM) is a technique used for identifying individual appliances' energy consumption from a household's total power usage. This study examines a novel energy disaggregation model called Variational Auto-Encoder (VAE) with Federated Learning (FL). Specifically, VAE has a complex structure that resolves the issues in Short Sequence-to-Point (Short S2P) with fewer samples as input windows for each appliance. Short S2P cannot be generalized and might confront some challenges while disaggregating multi-state appliances. To this end, we examine a series of experiments using a real-life dataset of appliance-level power from the UK: UK-DALE. We also investigate additional protection of model parameters using Differential Privacy (DP). The findings show that FL with the VAE model achieves comparable performance to its centralized counterpart and improves all the metrics significantly compared to the Short S2P model.","PeriodicalId":265337,"journal":{"name":"2023 IEEE Symposium on Computers and Communications (ISCC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC58397.2023.10217998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Non-Intrusive Load Monitoring (NILM) is a technique used for identifying individual appliances' energy consumption from a household's total power usage. This study examines a novel energy disaggregation model called Variational Auto-Encoder (VAE) with Federated Learning (FL). Specifically, VAE has a complex structure that resolves the issues in Short Sequence-to-Point (Short S2P) with fewer samples as input windows for each appliance. Short S2P cannot be generalized and might confront some challenges while disaggregating multi-state appliances. To this end, we examine a series of experiments using a real-life dataset of appliance-level power from the UK: UK-DALE. We also investigate additional protection of model parameters using Differential Privacy (DP). The findings show that FL with the VAE model achieves comparable performance to its centralized counterpart and improves all the metrics significantly compared to the Short S2P model.