Genie: a generator of natural language semantic parsers for virtual assistant commands

Giovanni Campagna, Silei Xu, M. Moradshahi, R. Socher, M. Lam
{"title":"Genie: a generator of natural language semantic parsers for virtual assistant commands","authors":"Giovanni Campagna, Silei Xu, M. Moradshahi, R. Socher, M. Lam","doi":"10.1145/3314221.3314594","DOIUrl":null,"url":null,"abstract":"To understand diverse natural language commands, virtual assistants today are trained with numerous labor-intensive, manually annotated sentences. This paper presents a methodology and the Genie toolkit that can handle new compound commands with significantly less manual effort. We advocate formalizing the capability of virtual assistants with a Virtual Assistant Programming Language (VAPL) and using a neural semantic parser to translate natural language into VAPL code. Genie needs only a small realistic set of input sentences for validating the neural model. Developers write templates to synthesize data; Genie uses crowdsourced paraphrases and data augmentation, along with the synthesized data, to train a semantic parser. We also propose design principles that make VAPL languages amenable to natural language translation. We apply these principles to revise ThingTalk, the language used by the Almond virtual assistant. We use Genie to build the first semantic parser that can support compound virtual assistants commands with unquoted free-form parameters. Genie achieves a 62% accuracy on realistic user inputs. We demonstrate Genie’s generality by showing a 19% and 31% improvement over the previous state of the art on a music skill, aggregate functions, and access control.","PeriodicalId":441774,"journal":{"name":"Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3314221.3314594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

To understand diverse natural language commands, virtual assistants today are trained with numerous labor-intensive, manually annotated sentences. This paper presents a methodology and the Genie toolkit that can handle new compound commands with significantly less manual effort. We advocate formalizing the capability of virtual assistants with a Virtual Assistant Programming Language (VAPL) and using a neural semantic parser to translate natural language into VAPL code. Genie needs only a small realistic set of input sentences for validating the neural model. Developers write templates to synthesize data; Genie uses crowdsourced paraphrases and data augmentation, along with the synthesized data, to train a semantic parser. We also propose design principles that make VAPL languages amenable to natural language translation. We apply these principles to revise ThingTalk, the language used by the Almond virtual assistant. We use Genie to build the first semantic parser that can support compound virtual assistants commands with unquoted free-form parameters. Genie achieves a 62% accuracy on realistic user inputs. We demonstrate Genie’s generality by showing a 19% and 31% improvement over the previous state of the art on a music skill, aggregate functions, and access control.
Genie:用于虚拟助理命令的自然语言语义解析器生成器
为了理解不同的自然语言命令,今天的虚拟助手需要接受大量人工注释的劳动密集型句子的训练。本文提出了一种方法和Genie工具包,可以处理新的复合命令,大大减少了手工工作。我们提倡使用虚拟助理编程语言(virtual Assistant Programming Language, VAPL)形式化虚拟助手的功能,并使用神经语义解析器将自然语言翻译成VAPL代码。Genie只需要一小组真实的输入句子来验证神经模型。开发人员编写模板来合成数据;Genie使用众包释义和数据增强,以及合成数据来训练语义解析器。我们还提出了使VAPL语言适合自然语言翻译的设计原则。我们运用这些原则修改了“阿尔蒙德”虚拟助手使用的语言“ThingTalk”。我们使用Genie构建了第一个语义解析器,它可以支持复合虚拟助手命令,其中包含未引用的自由格式参数。Genie在真实用户输入上达到62%的准确率。我们通过展示Genie在音乐技能、聚合功能和访问控制方面比之前的技术水平分别提高了19%和31%来展示它的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信