CAR - a deep learning structure for concurrent activity recognition: poster abstract

Yanyi Zhang, Xinyu Li, Jianyu Zhang, Shuhong Chen, Moliang Zhou, Richard A. Farneth, I. Marsic, R. Burd
{"title":"CAR - a deep learning structure for concurrent activity recognition: poster abstract","authors":"Yanyi Zhang, Xinyu Li, Jianyu Zhang, Shuhong Chen, Moliang Zhou, Richard A. Farneth, I. Marsic, R. Burd","doi":"10.1145/3055031.3055058","DOIUrl":null,"url":null,"abstract":"We introduce the Concurrent Activity Recognizer (CAR) - an efficient deep learning structure that recognizes complex concurrent teamwork activities from multimodal data. We implemented the system in a challenging medical setting, where it recognizes 35 different activities using Kinect depth video and data from passive RFID tags on 25 types of medical objects. Our preliminary results showed our system achieved an 84% average accuracy with 0.20 F1-Score.","PeriodicalId":206082,"journal":{"name":"Proceedings of the 16th ACM/IEEE International Conference on Information Processing in Sensor Networks","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM/IEEE International Conference on Information Processing in Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055031.3055058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We introduce the Concurrent Activity Recognizer (CAR) - an efficient deep learning structure that recognizes complex concurrent teamwork activities from multimodal data. We implemented the system in a challenging medical setting, where it recognizes 35 different activities using Kinect depth video and data from passive RFID tags on 25 types of medical objects. Our preliminary results showed our system achieved an 84% average accuracy with 0.20 F1-Score.
CAR -一个用于并发活动识别的深度学习结构:海报摘要
我们介绍了并发活动识别器(CAR)——一种高效的深度学习结构,可以从多模态数据中识别复杂的并发团队活动。我们在一个具有挑战性的医疗环境中实施了这个系统,它使用Kinect深度视频和25种医疗对象上的被动RFID标签的数据来识别35种不同的活动。我们的初步结果表明,我们的系统达到了84%的平均准确率,F1-Score为0.20。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信