Personalized Search: Potential and Pitfalls

S. Dumais
{"title":"Personalized Search: Potential and Pitfalls","authors":"S. Dumais","doi":"10.1145/2983323.2983367","DOIUrl":null,"url":null,"abstract":"Traditionally search engines have returned the same results to everyone who asks the same question. However, using a single ranking for everyone in every context at every point in time limits how well a search engine can do in providing relevant information. In this talk I present a framework to quantify the \"potential for personalization\" which we use to characterize the extent to which different people have different intents for the same query. I describe several examples of how we represent and use different kinds of contextual features to improve search quality for individuals and groups. Finally, I conclude by highlighting important challenges in developing personalized systems at Web scale including privacy, transparency, serendipity, and evaluation.","PeriodicalId":250808,"journal":{"name":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","volume":"521 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983323.2983367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Traditionally search engines have returned the same results to everyone who asks the same question. However, using a single ranking for everyone in every context at every point in time limits how well a search engine can do in providing relevant information. In this talk I present a framework to quantify the "potential for personalization" which we use to characterize the extent to which different people have different intents for the same query. I describe several examples of how we represent and use different kinds of contextual features to improve search quality for individuals and groups. Finally, I conclude by highlighting important challenges in developing personalized systems at Web scale including privacy, transparency, serendipity, and evaluation.
个性化搜索:潜力和陷阱
传统的搜索引擎会给每个问同样问题的人返回同样的结果。然而,在每个时间点的每个上下文中为每个人使用单一的排名限制了搜索引擎提供相关信息的能力。在这次演讲中,我提出了一个框架来量化“个性化潜力”,我们用它来描述不同的人对同一查询有不同的意图的程度。我描述了几个例子,说明我们如何表示和使用不同类型的上下文特征来提高个人和群体的搜索质量。最后,我强调了在Web规模上开发个性化系统的重要挑战,包括隐私、透明度、意外发现和评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信