On Dual Relationships of Secrecy Codes

Willie K. Harrison, M. Bloch
{"title":"On Dual Relationships of Secrecy Codes","authors":"Willie K. Harrison, M. Bloch","doi":"10.1109/ALLERTON.2018.8635841","DOIUrl":null,"url":null,"abstract":"We investigate properties of finite blocklength codes and their duals when used for coset coding over the binary erasure wiretap channel (BEWC). We identify sufficient conditions, related to the ranks of sub-matrices of a generator matrix that codes may satisfy to achieve the maximum equivocation among all codes with given blocklength and dimension, irrespective of the eavesdropper's channel erasure probability. We point out that binary maximum distance separable (MDS) codes are optimal for secrecy and we also show that simplex codes (and Hamming codes) have higher equivocation than families of codes with a single repeated column in the generator matrix (parity-check matrix). We conjecture that simplex and Hamming codes are optimal when used as the base linear code in a coset coding scheme for secrecy over the BEWC.","PeriodicalId":299280,"journal":{"name":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2018.8635841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We investigate properties of finite blocklength codes and their duals when used for coset coding over the binary erasure wiretap channel (BEWC). We identify sufficient conditions, related to the ranks of sub-matrices of a generator matrix that codes may satisfy to achieve the maximum equivocation among all codes with given blocklength and dimension, irrespective of the eavesdropper's channel erasure probability. We point out that binary maximum distance separable (MDS) codes are optimal for secrecy and we also show that simplex codes (and Hamming codes) have higher equivocation than families of codes with a single repeated column in the generator matrix (parity-check matrix). We conjecture that simplex and Hamming codes are optimal when used as the base linear code in a coset coding scheme for secrecy over the BEWC.
论密码学的对偶关系
我们研究了有限块长码及其对偶在二进制擦除窃听信道(BEWC)上用于辅助集编码时的性质。我们确定了编码在给定块长度和维数的所有编码中可以满足的与生成矩阵的子矩阵的秩相关的充分条件,使其在与窃听者的信道擦除概率无关的情况下达到最大的模糊性。我们指出,二进制最大距离可分离码(MDS)是最优的保密性,我们还表明,单纯形码(和汉明码)具有更高的含糊性比一个单一的重复列在生成器矩阵(奇偶校验矩阵)的码族。我们推测,单纯形码和汉明码是最优的,当使用作为基本线性码在coset编码方案的保密在BEWC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信