Generalization of task model using compliant movement primitives in a bimanual setting

Aleksandar Batinica, B. Nemec, J. Santos-Victor, A. Gams, M. Raković
{"title":"Generalization of task model using compliant movement primitives in a bimanual setting","authors":"Aleksandar Batinica, B. Nemec, J. Santos-Victor, A. Gams, M. Raković","doi":"10.1109/ROBIO.2017.8324707","DOIUrl":null,"url":null,"abstract":"Compliant Movement Primitives (CMPs) showed good performance for a desirable behavior of robots to maintain low trajectory error while being compliant without knowing the dynamic model of the task. This framework uses the integral representation of reference trajectories in a feedback loop together with driving joint torques that represent the feed-forward control term. To achieve CMPs generalization, refer-ence trajectories (represented in the form of task space position trajectories) are encoded as Dynamic Movement Primitives (DMPs) while the feed-forward torques are learned through the Gaussian Process Regression (GPR) and are represented as a combination of radial basis functions. This paper extends the existing framework through the generalization of CMPs in bimanual settings that can concurrently achieve low trajectory errors in relative task space and compliant behavior in absolute task space. To achieve this behavior of the bimanual robotic system, the control terms derived from CMP framework are extended with the symmetric control approach. We show how the task-specific bimanual task dynamics can be learned and generalized to different task parameters that influence the task space trajectory and to a different load. Real-world results on a bimanual Kuka LWR-4 robots configuration confirms the usability of the extended framework.","PeriodicalId":197159,"journal":{"name":"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"427 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2017.8324707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Compliant Movement Primitives (CMPs) showed good performance for a desirable behavior of robots to maintain low trajectory error while being compliant without knowing the dynamic model of the task. This framework uses the integral representation of reference trajectories in a feedback loop together with driving joint torques that represent the feed-forward control term. To achieve CMPs generalization, refer-ence trajectories (represented in the form of task space position trajectories) are encoded as Dynamic Movement Primitives (DMPs) while the feed-forward torques are learned through the Gaussian Process Regression (GPR) and are represented as a combination of radial basis functions. This paper extends the existing framework through the generalization of CMPs in bimanual settings that can concurrently achieve low trajectory errors in relative task space and compliant behavior in absolute task space. To achieve this behavior of the bimanual robotic system, the control terms derived from CMP framework are extended with the symmetric control approach. We show how the task-specific bimanual task dynamics can be learned and generalized to different task parameters that influence the task space trajectory and to a different load. Real-world results on a bimanual Kuka LWR-4 robots configuration confirms the usability of the extended framework.
基于柔性运动原语的任务模型泛化
柔顺运动原语(CMPs)在不知道任务动态模型的情况下保持机器人低轨迹误差的理想行为中表现出良好的性能。该框架使用反馈回路中参考轨迹的积分表示以及代表前馈控制项的驱动关节力矩。为了实现CMPs的泛化,参考轨迹(以任务空间位置轨迹的形式表示)被编码为动态运动原语(dmp),而前馈扭矩通过高斯过程回归(GPR)学习并被表示为径向基函数的组合。本文通过推广手工设置的cmp,扩展了现有框架,可以同时实现相对任务空间的低轨迹误差和绝对任务空间的柔性行为。为了实现双手机器人系统的这种行为,利用对称控制方法对CMP框架中的控制项进行了扩展。我们展示了如何学习特定于任务的手工任务动态,并将其推广到影响任务空间轨迹的不同任务参数和不同负载。在双手动库卡LWR-4机器人配置上的实际结果证实了扩展框架的可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信