{"title":"A subspace algorithm for identifying 2-D CRSD systems with deterministic inputs","authors":"J. Ramos, A. Alenany, H. Shang, P. Santos","doi":"10.1109/CDC.2011.6161299","DOIUrl":null,"url":null,"abstract":"In this paper, the class of subspace system identification algorithms is used to derive a new identification algorithm for 2-D causal, recursive, and separable-in-denominator (CRSD) state space systems in the Roesser model form. The algorithm take a given deterministic input-output pair of 2-D signals and computes the system order (n) and system parameter matrices {A;B;C;D}. Since the CRSD model can be treated as two 1-D systems, the proposed algorithm first separates the vertical component from the state and output equations and then formulates an equivalent set of 1-D horizontal subspace equations. The solution to the horizontal subspace identification subproblem contains all the information necessary to compute the system order and parameter matrices, including those from the vertical subsystem.","PeriodicalId":360068,"journal":{"name":"IEEE Conference on Decision and Control and European Control Conference","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Decision and Control and European Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2011.6161299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, the class of subspace system identification algorithms is used to derive a new identification algorithm for 2-D causal, recursive, and separable-in-denominator (CRSD) state space systems in the Roesser model form. The algorithm take a given deterministic input-output pair of 2-D signals and computes the system order (n) and system parameter matrices {A;B;C;D}. Since the CRSD model can be treated as two 1-D systems, the proposed algorithm first separates the vertical component from the state and output equations and then formulates an equivalent set of 1-D horizontal subspace equations. The solution to the horizontal subspace identification subproblem contains all the information necessary to compute the system order and parameter matrices, including those from the vertical subsystem.