Using Neural Networks to Label Rain Warning for Natural Hazard of Slope

Cheng-Yuan Tang, Whei-Wen Cheng, Tzu-Yen Hsu, C. Jeng, Yi-Leh Wu
{"title":"Using Neural Networks to Label Rain Warning for Natural Hazard of Slope","authors":"Cheng-Yuan Tang, Whei-Wen Cheng, Tzu-Yen Hsu, C. Jeng, Yi-Leh Wu","doi":"10.1109/ICMLC48188.2019.8949267","DOIUrl":null,"url":null,"abstract":"The landslides and flows cause significant direct damage to lives and property. A system for monitoring these signs can be the most powerful tool for disaster prevention. In the natural hazard of slope, the signs for rain warning is very useful for disaster prevention. Labeling the rain warning seems to be an important and useful job for disaster prevention. In this paper, two neural network models are used for labeling the rain warning. These two models are the multilayer perceptron (MLP) and the long short-term memory (LSTM). The raw data consist of four observations such as time (time), rainfall (rain), groundwater level (W1) and displacements of inclinometers (SAA-11 and SAA-20). The RMSE (Root Mean Squared Error) using LSTM is 0.161 and RMSE using MLP is 0.212. In the experimental results, LSTM is better than MLP.","PeriodicalId":221349,"journal":{"name":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC48188.2019.8949267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The landslides and flows cause significant direct damage to lives and property. A system for monitoring these signs can be the most powerful tool for disaster prevention. In the natural hazard of slope, the signs for rain warning is very useful for disaster prevention. Labeling the rain warning seems to be an important and useful job for disaster prevention. In this paper, two neural network models are used for labeling the rain warning. These two models are the multilayer perceptron (MLP) and the long short-term memory (LSTM). The raw data consist of four observations such as time (time), rainfall (rain), groundwater level (W1) and displacements of inclinometers (SAA-11 and SAA-20). The RMSE (Root Mean Squared Error) using LSTM is 0.161 and RMSE using MLP is 0.212. In the experimental results, LSTM is better than MLP.
神经网络在边坡自然灾害降雨预警中的应用
山体滑坡和泥石流对生命财产造成重大直接损失。监测这些迹象的系统可能是预防灾害的最有力工具。在边坡自然灾害中,雨水预警标志在防灾中具有重要作用。标注降雨预警似乎是一项重要而有用的防灾工作。本文采用两种神经网络模型对降雨预警进行标注。这两种模型分别是多层感知器(MLP)和长短期记忆(LSTM)。原始数据包括时间(time)、降雨(rain)、地下水位(W1)和倾角仪(SAA-11和SAA-20)位移4个观测值。使用LSTM的RMSE(均方根误差)为0.161,使用MLP的RMSE为0.212。在实验结果中,LSTM优于MLP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信