Flavie Przybylski, Yinoussa Adagolodjo, Anna Mîra, Giulio Cerruti, Jérémie Dequidt, C. Duriez, Pierre Berthet-Rayne
{"title":"3D Kinematics and Quasi-Statics of a Growing Robot Eversion","authors":"Flavie Przybylski, Yinoussa Adagolodjo, Anna Mîra, Giulio Cerruti, Jérémie Dequidt, C. Duriez, Pierre Berthet-Rayne","doi":"10.1109/RoboSoft55895.2023.10122073","DOIUrl":null,"url":null,"abstract":"Growing robots and their eversion principle have wide applications ranging from surgery to industrial inspection and archaeology. The eversion process involves deploying an inflatable device with a material located at the tip of the robot, which, when under pressure, elongates the robot's body. However, the simulation of this complex kinematic phenomenon is a significant challenge. Our approach proposes to use a combination of kinematics and quasi-static modeling to parameterize the starting conditions of the eversion process. This facilitates the understanding of the behavior of this complex kinematic phenomenon and help identify factors that have a significant impact on the eversion process and its response to external factors. The kinematic model uses the Cosserat rod models for local coordinates, while the quasi-static model is based on finite element analysis. The two models are combined to capture the behavior of the robot tip during eversion. This approach has been implemented and tested using the SOFA framework and has been evaluated on the deployment of a vine robot on a narrow passage. The results of our approach are encouraging to better understand the behaviour of soft growing robot during eversion.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RoboSoft55895.2023.10122073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Growing robots and their eversion principle have wide applications ranging from surgery to industrial inspection and archaeology. The eversion process involves deploying an inflatable device with a material located at the tip of the robot, which, when under pressure, elongates the robot's body. However, the simulation of this complex kinematic phenomenon is a significant challenge. Our approach proposes to use a combination of kinematics and quasi-static modeling to parameterize the starting conditions of the eversion process. This facilitates the understanding of the behavior of this complex kinematic phenomenon and help identify factors that have a significant impact on the eversion process and its response to external factors. The kinematic model uses the Cosserat rod models for local coordinates, while the quasi-static model is based on finite element analysis. The two models are combined to capture the behavior of the robot tip during eversion. This approach has been implemented and tested using the SOFA framework and has been evaluated on the deployment of a vine robot on a narrow passage. The results of our approach are encouraging to better understand the behaviour of soft growing robot during eversion.