Domain Specific Emotion Lexicon Expansion

Hussain S. Khawaja, M. O. Beg, Saira Qamar
{"title":"Domain Specific Emotion Lexicon Expansion","authors":"Hussain S. Khawaja, M. O. Beg, Saira Qamar","doi":"10.1109/ICET.2018.8603550","DOIUrl":null,"url":null,"abstract":"Emotion Classification using lexicons has vast number of applications ranging from social media analysis to pervasive computing. Lexicons are usually hand-crafted and cost a lot of time and effort to generate. The major research challenge in this area is the creation of a generalized lexicon which serves well for every domain. This work focuses on automatic expansion of emotion lexicons to ease the process of domain adaption. Our proposed approach — CB-Lex — relies on a seed lexicon and an unlabeled corpus from the target domain. In experimental results, our expanded lexicons show an improvement of over 6% in F-Measure.","PeriodicalId":443353,"journal":{"name":"2018 14th International Conference on Emerging Technologies (ICET)","volume":"380 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th International Conference on Emerging Technologies (ICET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICET.2018.8603550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Emotion Classification using lexicons has vast number of applications ranging from social media analysis to pervasive computing. Lexicons are usually hand-crafted and cost a lot of time and effort to generate. The major research challenge in this area is the creation of a generalized lexicon which serves well for every domain. This work focuses on automatic expansion of emotion lexicons to ease the process of domain adaption. Our proposed approach — CB-Lex — relies on a seed lexicon and an unlabeled corpus from the target domain. In experimental results, our expanded lexicons show an improvement of over 6% in F-Measure.
特定领域情感词典扩展
使用词汇进行情感分类具有广泛的应用,从社交媒体分析到普适计算。词典通常是手工制作的,需要花费大量的时间和精力来生成。该领域的主要研究挑战是创建一个适用于每个领域的通用词典。本工作的重点是情感词汇的自动扩展,以简化领域适应的过程。我们提出的方法- CB-Lex -依赖于来自目标领域的种子词典和未标记的语料库。在实验结果中,我们的扩展词汇在F-Measure上提高了6%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信