Robust Object Detection in Colour Images Using a Multivariate Percentage Occupancy Hit-or-Miss Transform

Fraser Macfarlane, P. Murray, S. Marshall, B. Perret, A. Evans, Henry White
{"title":"Robust Object Detection in Colour Images Using a Multivariate Percentage Occupancy Hit-or-Miss Transform","authors":"Fraser Macfarlane, P. Murray, S. Marshall, B. Perret, A. Evans, Henry White","doi":"10.1515/mathm-2020-0111","DOIUrl":null,"url":null,"abstract":"Abstract The extension of Mathematical Morphology to colour and multivariate images is challenging due to the need to define a total ordering in the colour space. No one general way of ordering multivariate data exists and, therefore, there is no single, definitive way of performing morphological operations on colour images. In this paper, we propose an extension to mathematical morphology, based on reduced ordering, specifically the morphological Hit-or-Miss Transform which is used for object detection. The reduced ordering employed transforms multivariate observations to scalar comparisons allowing for an order to be derived and for both flat and non-flat structuring elements to be used. We also compare other definitions of the Hit-or-Miss Transform and test alternative colour ordering schemes presented in the literature. Our proposed method is shown to be intuitive and outperforms other approaches to multivariate Hit-or-Miss Transforms. Furthermore, methods of setting the parameters of the proposed Hit-or-Miss Transform are introduced in order to make the transform robust to noise and partial occlusion of objects and, finally, a set of design tools are presented in order to obtain optimal values for setting these parameters accordingly.","PeriodicalId":244328,"journal":{"name":"Mathematical Morphology - Theory and Applications","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Morphology - Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mathm-2020-0111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The extension of Mathematical Morphology to colour and multivariate images is challenging due to the need to define a total ordering in the colour space. No one general way of ordering multivariate data exists and, therefore, there is no single, definitive way of performing morphological operations on colour images. In this paper, we propose an extension to mathematical morphology, based on reduced ordering, specifically the morphological Hit-or-Miss Transform which is used for object detection. The reduced ordering employed transforms multivariate observations to scalar comparisons allowing for an order to be derived and for both flat and non-flat structuring elements to be used. We also compare other definitions of the Hit-or-Miss Transform and test alternative colour ordering schemes presented in the literature. Our proposed method is shown to be intuitive and outperforms other approaches to multivariate Hit-or-Miss Transforms. Furthermore, methods of setting the parameters of the proposed Hit-or-Miss Transform are introduced in order to make the transform robust to noise and partial occlusion of objects and, finally, a set of design tools are presented in order to obtain optimal values for setting these parameters accordingly.
基于多变量百分比占用命中率变换的彩色图像鲁棒目标检测
数学形态学扩展到色彩和多元图像是具有挑战性的,因为需要在色彩空间中定义一个总顺序。没有一种排序多元数据的通用方法存在,因此,没有一种单一的、确定的方法来对彩色图像进行形态学操作。在本文中,我们提出了数学形态学的扩展,基于降阶,特别是形态学命中或命中变换,用于目标检测。所采用的简化排序将多变量观察转换为标量比较,从而允许派生顺序,并允许使用平面和非平面结构元素。我们还比较了其他定义的命中或错过变换和测试替代颜色排序方案提出的文献。我们提出的方法被证明是直观的,并且优于其他方法的多元命中或未命中变换。此外,为了使所提出的命中或命中变换对噪声和物体的部分遮挡具有鲁棒性,介绍了设置参数的方法,最后提出了一套设计工具,以便获得设置这些参数的最佳值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信