{"title":"Wall Temperature Effects on Aerothermodynamics of the Hypersonic Blunt Cone","authors":"K. Zhong, Peng Bi, Yumin Mou, Xinguo Wu, Wei Zhao","doi":"10.1109/ICMAE52228.2021.9522560","DOIUrl":null,"url":null,"abstract":"Accurate aeroheating predictions play a significant role in the design of thermal protection system. In this paper, the non-equilibrium method is implemented to investigate wall temperature effects on aeroheating characteristics of hypersonic blunt cone. Seven isothermal wall temperatures (300K~2100K) under three different incoming states are utilized to take account of the temperature effects respectively. The numerical results show that when ρ∞=1.0×10-5kg/m3 or1.0×10-3kg/m3, the stagnation heat flux increases first and then decreases gradually as the wall temperature increases. For instance, when ρ∞=1.0×10-5kg/m3, the stagnant heat flux of Tw=600K case increases by up to 4% (0.04MW/m2) compared to Tw=300K case. In actual engineering applications, wall temperature should be set reasonably according to the actual condition of vehicle surface to obtain accurate aeroheating predictions. The mechanism of monotonous variation of heat flux versus wall temperature is complicated for different flow conditions, and thus in-depth exploration is expected to be carried out in the future.","PeriodicalId":161846,"journal":{"name":"2021 12th International Conference on Mechanical and Aerospace Engineering (ICMAE)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Conference on Mechanical and Aerospace Engineering (ICMAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMAE52228.2021.9522560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate aeroheating predictions play a significant role in the design of thermal protection system. In this paper, the non-equilibrium method is implemented to investigate wall temperature effects on aeroheating characteristics of hypersonic blunt cone. Seven isothermal wall temperatures (300K~2100K) under three different incoming states are utilized to take account of the temperature effects respectively. The numerical results show that when ρ∞=1.0×10-5kg/m3 or1.0×10-3kg/m3, the stagnation heat flux increases first and then decreases gradually as the wall temperature increases. For instance, when ρ∞=1.0×10-5kg/m3, the stagnant heat flux of Tw=600K case increases by up to 4% (0.04MW/m2) compared to Tw=300K case. In actual engineering applications, wall temperature should be set reasonably according to the actual condition of vehicle surface to obtain accurate aeroheating predictions. The mechanism of monotonous variation of heat flux versus wall temperature is complicated for different flow conditions, and thus in-depth exploration is expected to be carried out in the future.