Research on Remaining Useful Life Prediction Based on Nonlinear Filtering for Lithium-ion Battery

Zhouxiao Xiao, H. Fang, Yang Chang
{"title":"Research on Remaining Useful Life Prediction Based on Nonlinear Filtering for Lithium-ion Battery","authors":"Zhouxiao Xiao, H. Fang, Yang Chang","doi":"10.1109/SAFEPROCESS45799.2019.9213445","DOIUrl":null,"url":null,"abstract":"With the widespread application of lithium-ion batteries in industries around the world, lithium-ion battery performance degradation prediction and remaining useful life (RUL) estimation methods are receiving much more attention. This paper summarizes the nonlinear filtering algorithms used in RUL estimation of lithium-ion batteries, which compares and analyzes the applicable conditions and performance of the commonly used nonlinear filtering algorithms, including extended Kalman filtering (EKF), unscented Kalman filtering (UKF), particle filtering (PF), extended particle filtering (EPF) and unscented particle filtering(UPF). Simulations are obtained by lithium-ion battery performance degradation model and the performance of these algorithms are verified.","PeriodicalId":353946,"journal":{"name":"2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAFEPROCESS45799.2019.9213445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the widespread application of lithium-ion batteries in industries around the world, lithium-ion battery performance degradation prediction and remaining useful life (RUL) estimation methods are receiving much more attention. This paper summarizes the nonlinear filtering algorithms used in RUL estimation of lithium-ion batteries, which compares and analyzes the applicable conditions and performance of the commonly used nonlinear filtering algorithms, including extended Kalman filtering (EKF), unscented Kalman filtering (UKF), particle filtering (PF), extended particle filtering (EPF) and unscented particle filtering(UPF). Simulations are obtained by lithium-ion battery performance degradation model and the performance of these algorithms are verified.
基于非线性滤波的锂离子电池剩余使用寿命预测研究
随着锂离子电池在世界范围内的广泛应用,锂离子电池性能退化预测和剩余使用寿命(RUL)估计方法受到越来越多的关注。总结了锂离子电池RUL估计中常用的非线性滤波算法,比较分析了常用的非线性滤波算法,包括扩展卡尔曼滤波(EKF)、无气味卡尔曼滤波(UKF)、粒子滤波(PF)、扩展粒子滤波(EPF)和无气味粒子滤波(UPF)的适用条件和性能。利用锂离子电池性能退化模型进行了仿真,验证了算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信