Non-overlapping power/ground planes for localized power distribution network design

A. Engin, I. Ndip, K. Lang, J. Aguirre
{"title":"Non-overlapping power/ground planes for localized power distribution network design","authors":"A. Engin, I. Ndip, K. Lang, J. Aguirre","doi":"10.1109/EDAPS.2016.7893111","DOIUrl":null,"url":null,"abstract":"Power/ground planes are used for low IR-drop and inductance, but they also cause switching noise coupling globally across chip packages and printed circuit boards. The switching noise coupling is a concern for mixed-signal boards, high-speed I/Os, and electromagnetic compatibility. In GHz frequency regime, switching noise cannot be controlled by off-chip discrete decoupling capacitors due to their inductance. In this paper we introduce the non-overlapping power/ground planes design methodology for filtering of GHz power plane noise. Unlike existing approaches, our approach is simple, has wide bandwidth, and does not increase IR-drop or inductance.","PeriodicalId":191549,"journal":{"name":"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDAPS.2016.7893111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Power/ground planes are used for low IR-drop and inductance, but they also cause switching noise coupling globally across chip packages and printed circuit boards. The switching noise coupling is a concern for mixed-signal boards, high-speed I/Os, and electromagnetic compatibility. In GHz frequency regime, switching noise cannot be controlled by off-chip discrete decoupling capacitors due to their inductance. In this paper we introduce the non-overlapping power/ground planes design methodology for filtering of GHz power plane noise. Unlike existing approaches, our approach is simple, has wide bandwidth, and does not increase IR-drop or inductance.
面向局域配电网设计的非重叠电源/地平面
电源/地平面用于低ir降和低电感,但它们也会导致芯片封装和印刷电路板之间的开关噪声耦合。开关噪声耦合是混合信号板、高速I/ o和电磁兼容性关注的问题。在GHz频率下,由于片外离散去耦电容的电感特性,开关噪声无法被控制。本文介绍了一种用于GHz功率平面噪声滤波的非重叠功率/地平面设计方法。与现有的方法不同,我们的方法简单,具有宽带宽,并且不会增加ir降或电感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信