Semantic Compression with Region Calculi in Nested Hierarchical Grids

Joseph Zalewski, P. Hitzler, K. Janowicz
{"title":"Semantic Compression with Region Calculi in Nested Hierarchical Grids","authors":"Joseph Zalewski, P. Hitzler, K. Janowicz","doi":"10.1145/3474717.3483965","DOIUrl":null,"url":null,"abstract":"We propose the combining of region connection calculi with nested hierarchical grids for representing spatial region data in the context of knowledge graphs, thereby avoiding reliance on vector representations. We present a resulting region calculus, and provide qualitative and formal evidence that this representation can be favorable with large data volumes in the context of knowledge graphs; in particular we study means of efficiently choosing which triples to store to minimize space requirements when data is represented this way, and we provide an algorithm for finding the smallest possible set of triples for this purpose including an asymptotic measure of the size of this set for a special case. We prove that a known constraint calculus is adequate for the reconstruction of all triples describing a region from such a pruned representation, but problematic for reasoning with hierarchical grids in general.","PeriodicalId":340759,"journal":{"name":"Proceedings of the 29th International Conference on Advances in Geographic Information Systems","volume":"598 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3474717.3483965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose the combining of region connection calculi with nested hierarchical grids for representing spatial region data in the context of knowledge graphs, thereby avoiding reliance on vector representations. We present a resulting region calculus, and provide qualitative and formal evidence that this representation can be favorable with large data volumes in the context of knowledge graphs; in particular we study means of efficiently choosing which triples to store to minimize space requirements when data is represented this way, and we provide an algorithm for finding the smallest possible set of triples for this purpose including an asymptotic measure of the size of this set for a special case. We prove that a known constraint calculus is adequate for the reconstruction of all triples describing a region from such a pruned representation, but problematic for reasoning with hierarchical grids in general.
基于区域演算的嵌套分层网格语义压缩
我们提出将区域连接演算法与嵌套层次网格相结合来表示知识图背景下的空间区域数据,从而避免了对向量表示的依赖。我们提出了一个区域演算,并提供定性和形式化的证据,证明这种表示在知识图的背景下对大数据量是有利的;特别地,我们研究了当数据以这种方式表示时,有效地选择存储哪些三元组以最小化空间需求的方法,并且我们提供了一种算法来找到用于此目的的最小可能三元组集,包括对该集大小的一个特殊情况的渐近度量。我们证明了一个已知的约束演算是足够的,以重建所有的三元组描述一个区域从这样的修剪表示,但问题的推理与一般的分层网格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信