Shahenda M. Abdelhafiz, A. M. Abdelaty, M. Fouda, A. Radwan
{"title":"Time-domain Li-ion Battery Modeling Under Staircase Charging and Discharging","authors":"Shahenda M. Abdelhafiz, A. M. Abdelaty, M. Fouda, A. Radwan","doi":"10.1109/ICM52667.2021.9664909","DOIUrl":null,"url":null,"abstract":"Parameter identification of Li-ion battery models is important for efficiently charge and discharge the most widely used energy storage devices. In this work, we propose a simplified battery model with a parameter identification method for time-domain charging and discharging. Staircase PotentioElectrochemical Impedance Spectroscopy technique (SPEIS) is chosen to characterize the batteries during charging and discharging cycles at different voltage steps values. Marine Predator Algorithm (MPA) is used to identify the proposed model parameters on two commercial Li-ion coin-shaped batteries. The proposed model shows very good matching with the experiments with absolute current error less than 10 4. Hence, the proposed model can be used for real-time applications to predict the battery’s behavior under different operating conditions.","PeriodicalId":212613,"journal":{"name":"2021 International Conference on Microelectronics (ICM)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM52667.2021.9664909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Parameter identification of Li-ion battery models is important for efficiently charge and discharge the most widely used energy storage devices. In this work, we propose a simplified battery model with a parameter identification method for time-domain charging and discharging. Staircase PotentioElectrochemical Impedance Spectroscopy technique (SPEIS) is chosen to characterize the batteries during charging and discharging cycles at different voltage steps values. Marine Predator Algorithm (MPA) is used to identify the proposed model parameters on two commercial Li-ion coin-shaped batteries. The proposed model shows very good matching with the experiments with absolute current error less than 10 4. Hence, the proposed model can be used for real-time applications to predict the battery’s behavior under different operating conditions.