{"title":"A ranking approach to target detection for automatic link generation","authors":"Jiyin He, M. de Rijke","doi":"10.1145/1835449.1835638","DOIUrl":null,"url":null,"abstract":"We focus on the task of target detection in automatic link generation with Wikipedia, i.e., given an N-gram in a snippet of text, find the relevant Wikipedia concepts that explain or provide background knowledge for it. We formulate the task as a ranking problem and investigate the effectiveness of learning to rank approaches and of the features that we use to rank the target concepts for a given N-gram. Our experiments show that learning to rank approaches outperform traditional binary classification approaches. Also, our proposed features are effective both in binary classification and learning to rank settings.","PeriodicalId":378368,"journal":{"name":"Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1835449.1835638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
We focus on the task of target detection in automatic link generation with Wikipedia, i.e., given an N-gram in a snippet of text, find the relevant Wikipedia concepts that explain or provide background knowledge for it. We formulate the task as a ranking problem and investigate the effectiveness of learning to rank approaches and of the features that we use to rank the target concepts for a given N-gram. Our experiments show that learning to rank approaches outperform traditional binary classification approaches. Also, our proposed features are effective both in binary classification and learning to rank settings.