A Robust Estimator for Evaluating Internet Worm Infection Rate

Y. Deng, Guanzhong Dai, Shuxin Chen
{"title":"A Robust Estimator for Evaluating Internet Worm Infection Rate","authors":"Y. Deng, Guanzhong Dai, Shuxin Chen","doi":"10.1109/CIS.2007.116","DOIUrl":null,"url":null,"abstract":"The Internet worm is a menace for the security of the Internet users. To detect and protect the Internet worm becomes an important research topic in the field of Internet security. A robust estimation method for evaluating worm infection rate is proposed in this paper. The robust estimator of worm infection rate is derived based on the robust maximum likelihood estimation principle at first; The corresponding elements of the equivalent weight matrix constructed by the residuals and some chosen weight functions are given; The error influence functions related to the robust estimator and the least squares estimator are respectively analyzed; At last, a simulated example is carried out. It is shown that the robust estimation is effective and reliable in resisting the bad influence of the outlying scan data on the estimated worm infection rate with high computation convergence speed.","PeriodicalId":127238,"journal":{"name":"2007 International Conference on Computational Intelligence and Security (CIS 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computational Intelligence and Security (CIS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2007.116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The Internet worm is a menace for the security of the Internet users. To detect and protect the Internet worm becomes an important research topic in the field of Internet security. A robust estimation method for evaluating worm infection rate is proposed in this paper. The robust estimator of worm infection rate is derived based on the robust maximum likelihood estimation principle at first; The corresponding elements of the equivalent weight matrix constructed by the residuals and some chosen weight functions are given; The error influence functions related to the robust estimator and the least squares estimator are respectively analyzed; At last, a simulated example is carried out. It is shown that the robust estimation is effective and reliable in resisting the bad influence of the outlying scan data on the estimated worm infection rate with high computation convergence speed.
一种评估网络蠕虫感染率的鲁棒估计
网络蠕虫对互联网用户的安全构成威胁。对网络蠕虫进行检测和防护已成为网络安全领域的一个重要研究课题。提出了一种评估蠕虫感染率的鲁棒估计方法。首先基于鲁棒极大似然估计原理推导了蠕虫感染率的鲁棒估计;给出了由残差构造的等效权矩阵的相应元素和所选择的权函数;分别分析了与鲁棒估计量和最小二乘估计量相关的误差影响函数;最后进行了仿真算例。结果表明,鲁棒估计能够有效、可靠地抵抗外围扫描数据对蠕虫感染率估计的不良影响,且具有较高的计算收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信