Signal Deconvolution Using Frequency and Time Domain Magnitude Constraints

H. Trussell, P. Sura
{"title":"Signal Deconvolution Using Frequency and Time Domain Magnitude Constraints","authors":"H. Trussell, P. Sura","doi":"10.1364/srs.1983.wa14","DOIUrl":null,"url":null,"abstract":"In many signal restoration problems we have very limited knowledge about the statistics required for implementation of the most common restoration techniques, for example, Wiener filtering. We do, however, possess some practical a priori knowledge about the nature of the signal we week to estimate. Because of this a priori knowledge, it may be suboptimal to use methods which make few assumptions about the nature of the ideal signal, for example, maximum entropy restoration [1]. Iterative restoration methods can be easily modified to incorporate such a priori knowledge while requiring little statistical information [2].","PeriodicalId":279385,"journal":{"name":"Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints","volume":"723 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/srs.1983.wa14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In many signal restoration problems we have very limited knowledge about the statistics required for implementation of the most common restoration techniques, for example, Wiener filtering. We do, however, possess some practical a priori knowledge about the nature of the signal we week to estimate. Because of this a priori knowledge, it may be suboptimal to use methods which make few assumptions about the nature of the ideal signal, for example, maximum entropy restoration [1]. Iterative restoration methods can be easily modified to incorporate such a priori knowledge while requiring little statistical information [2].
利用频域和时域幅度约束的信号反卷积
在许多信号恢复问题中,我们对实现最常见的恢复技术(例如维纳滤波)所需的统计知识非常有限。然而,我们确实拥有一些关于我们要估计的信号性质的实际先验知识。由于这种先验知识,使用对理想信号的性质做出很少假设的方法可能是次优的,例如,最大熵恢复[1]。迭代恢复方法可以很容易地修改,以纳入这种先验知识,而不需要多少统计信息[2]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信