Dual State - Parameter Estimation for Series Arc Fault Detection on a DC Microgrid

K. Gajula, Xiu Yao, L. Herrera
{"title":"Dual State - Parameter Estimation for Series Arc Fault Detection on a DC Microgrid","authors":"K. Gajula, Xiu Yao, L. Herrera","doi":"10.1109/ECCE44975.2020.9235753","DOIUrl":null,"url":null,"abstract":"In this paper, a detection and localization technique based on dual State and Parameter Estimation (SE and PE respectively) for series dc arc faults is presented. Detection of series arc faults in dc microgrids is challenging due to its low fault current. By using the available set of sensor measurement data over a period of time, a Least Squares (LS) based SE algorithm estimates the dc microgrid’s bus voltages and injection currents. Kalman Filter (KF) is then used to estimate the line conductances in the network, which are used to detect and localize (with respect to the faulted line) the series arc fault. Simulation results are presented with different case studies to demonstrate the robustness of the algorithm to normal operating conditions and different number and placement of sensors. Finally, Control Hardware in the Loop (CHIL) results are shown.","PeriodicalId":433712,"journal":{"name":"2020 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE44975.2020.9235753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, a detection and localization technique based on dual State and Parameter Estimation (SE and PE respectively) for series dc arc faults is presented. Detection of series arc faults in dc microgrids is challenging due to its low fault current. By using the available set of sensor measurement data over a period of time, a Least Squares (LS) based SE algorithm estimates the dc microgrid’s bus voltages and injection currents. Kalman Filter (KF) is then used to estimate the line conductances in the network, which are used to detect and localize (with respect to the faulted line) the series arc fault. Simulation results are presented with different case studies to demonstrate the robustness of the algorithm to normal operating conditions and different number and placement of sensors. Finally, Control Hardware in the Loop (CHIL) results are shown.
直流微电网串联电弧故障检测的双状态参数估计
提出了一种基于双状态估计和双参数估计(SE和PE)的直流电弧串联故障检测与定位技术。直流微电网的串联电弧故障由于其故障电流小,对其检测具有挑战性。利用一段时间内可用的传感器测量数据集,基于最小二乘(LS)的SE算法估计直流微电网的母线电压和注入电流。然后使用卡尔曼滤波(KF)估计网络中的线路电导,用于检测和定位(相对于故障线路)串联电弧故障。仿真结果显示了该算法对正常工作条件和不同传感器数量和位置的鲁棒性。最后给出了控制硬件在环(CHIL)的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信